Answer:
3433.5 N
Explanation:
g = Acceleration due to gravity = 9.81 m/s²
m = Mass of person = 70 kg
According to the question
a = Acceleration

Balancing the forces we have

The required force is 3433.5 N
Answer and Explanation: Kinetic energy is related to movement: it is the energy an object possesses during the movement. it is calculated as:

For the object thrown in the air:
![K=\frac{1}{2}.2.[v(t)]^{2}](https://tex.z-dn.net/?f=K%3D%5Cfrac%7B1%7D%7B2%7D.2.%5Bv%28t%29%5D%5E%7B2%7D)


Kinetic energy of the object as a function of time: 
Potential energy is the energy an object possesses due to its position in relation to other objects. It is calculated as:

For the object thrown in the air:



Potential energy as function of time: 
Total kinetic and potential energy, also known as mechanical energy is
TME =
+ (
)
TME = 1752
The expression shows that total energy of an object thrown in the air is constant and independent of time.
Answer:
88.3
Explanation:
Emf in a rotating coil is given by rate of change of flux:
E= dФ/dt=(NABcos∅)/ dt
N: number of turns in the coil= 80
A: area of the coil= 0.25×0.40= 0.1
B: magnetic field strength= 1.1
Ф: angle of rotation= 90- 37= 53
dt= 0.06s
E= (80 × 0.4× 0.25×1.10 × cos53)/0.06= 88.3V
Answer:
a) f = 615.2 Hz b) f = 307.6 Hz
Explanation:
The speed in a wave on a string is
v = √ T / μ
also the speed a wave must meet the relationship
v = λ f
Let's use these expressions in our problem, for the initial conditions
v = √ T₀ /μ
√ (T₀/ μ) = λ₀ f₀
now it indicates that the tension is doubled
T = 2T₀
√ (T /μ) = λ f
√( 2To /μ) = λ f
√2 √ T₀ /μ = λ f
we substitute
√2 (λ₀ f₀) = λ f
if we suppose that in both cases the string is in the same fundamental harmonic, this means that the wavelength only depends on the length of the string, which does not change
λ₀ = λ
f = f₀ √2
f = 435 √ 2
f = 615.2 Hz
b) The tension is cut in half
T = T₀ / 2
√ (T₀ / 2muy) = f = λ f
√ (T₀ / μ) 1 /√2 = λ f
fo / √2 = f
f = 435 / √2
f = 307.6 Hz
Traslate
La velocidad en una onda en una cuerda es
v = √ T/μ
ademas la velocidad una onda debe cumplir la relación
v= λ f
Usemos estas expresión en nuestro problema, para las condiciones iniciales
v= √ To/μ
√ ( T₀/μ) = λ₀ f₀
ahora nos indica que la tensión se duplica
T = 2T₀
√ ( T/μ) = λf
√ ) 2T₀/μ = λ f
√ 2 √ T₀/μ = λ f
substituimos
√2 ( λ₀ f₀) = λ f
si suponemos que en los dos caso la cuerda este en el mismo armónico fundamental, esto es que la longitud de onda unicamente depende de la longitud de la cuerda, la cual no cambia
λ₀ = λ
f = f₀ √2
f = 435 √2
f = 615,2 Hz
b) La tension se reduce a la mitad
T = T₀/2
RA ( T₀/2μ) = λ f
Ra(T₀/μ) 1/ra 2 = λ f
fo /√ 2 = f
f = 435/√2
f = 307,6 Hz
Answer:b)1770 kWh
Explanation:
Given
volume of water 
Temperature rise 

also 1 kg mass is approximately is 1 gallon
therefore 40,000 gallon is equivalent to 3.8\times 40000 kg
heat Required to raise temperature is




