I see the light moving exactly at speed equal to c.
In fact, the second postulate of special relativity states that:
"The speed of light in free space has the same value c<span> in all inertial frames of reference."
</span>
The problem says that I am moving at speed 2/3 c, so my motion is a uniform motion (constant speed). This means I am in an inertial frame of reference, so the speed of light in this frame must be equal to c.
Answer:
The torque on the child is now the same, τ.
Explanation:
- It can be showed that the external torque applied by a net force on a rigid body, is equal to the product of the moment of inertia of the body with respect to the axis of rotation, times the angular acceleration.
- In this case, as the movement of the child doesn't create an external torque, the torque must remain the same.
- The moment of inertia is the sum of the moment of inertia of the merry-go-round (the same that for a solid disk) plus the product of the mass of the child times the square of the distance to the center.
- When the child is standing at the edge of the merry-go-round, the moment of inertia is as follows:

- When the child moves to a position half way between the center and the edge of the merry-go-round, the moment of inertia of the child decreases, as the distance to the center is less than before, as follows:

- Since the angular acceleration increases from α to 2*α, we can write the torque expression as follows:
τ = 3/4*m*r² * (2α) = 3/2*m*r²
same result than in (2), so the torque remains the same.
Answer:
120V
Explanation:
Given parameters:
Current = 6A
Resistance = 20Ω
Unknown:
Voltage = ?
Solution:
According to ohms law;
V = IR
Where V is the voltage
I is the current
R is the resistance
Now, insert the parameters and solve;
V = 6 x 20 = 120V
Inelastic.
If it was elastic, they'd bump right off each other. But since they've been locked, or stuck together, this is inelastic.