Answer:
Explanation:
Given
volume of sample 
Temperature 
Pressure 
for different conditions
Temperature 
Pressure 
suppose
is the volume of sample
Using ideal gas equation




1) 
When both the electric field and the magnetic field are acting on the electron normal to the beam and normal to each other, the electric force and the magnetic force on the electron have opposite directions: in order to produce no deflection on the electron beam, the two forces must be equal in magnitude

where
q is the electron charge
E is the magnitude of the electric field
v is the electron speed
B is the magnitude of the magnetic field
Solving the formula for v, we find

2) 4.1 mm
When the electric field is removed, only the magnetic force acts on the electron, providing the centripetal force that keeps the electron in a circular path:

where m is the mass of the electron and r is the radius of the trajectory. Solving the formula for r, we find

3) 
The speed of the electron in the circular trajectory is equal to the ratio between the circumference of the orbit,
, and the period, T:

Solving the equation for T and using the results found in 1) and 2), we find the period of the orbit:

Given:
Distance = 50 yard = 45.72 meter
Speed = 40 km/hr = 11.11 m/s
To find:
Time required by ball to reach the receiver = ?
Formula used:
speed = 
Solution:
The speed of the ball is given by,
speed = 
Thus,
Time = 
Distance = 50 yard = 45.72 meter
Speed = 40 km/hr = 11.11 m/s
Time = 4.12 second
Hence, ball reaches the receiver in 4.12 second.
Answer:
Rate of change of water will be -6 gallon/minute
Explanation:
We have given water in the tank as the function of time as

We have to find the rate of change of water in the tank at t = 3 minute
For rate of change we have to differentiate both side
So 
At t = 3 minute
