answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
ANTONII [103]
2 years ago
5

A 1.0-m-long copper wire of diameter 0.10 cm carries a current of 50.0 A to the east. Suppose we apply to this wire a magnetic f

ield that produces on it an upward force exactly equal in magnitude to the wire's weight, causing the wire to "levitate."
Required:
a. What is the field's magnitude?
b. What is the field's direction?
Physics
1 answer:
Setler79 [48]2 years ago
7 0

Answer:

The classification of that same issue in question is characterized below.

Explanation:

The given values are:

Current, I = 50.0 A

Diameter, d = 0.10 cm

(a)...

As we know,

⇒  Magnetic force = Copper wire's weight

So,

⇒   B\times I\times L=M\times g

On putting the estimated values, we get

⇒  B\times 50\times 1=7.037\times 10^{-3}\times 9.81

⇒  50B=69.03297\times 10^{-3}

⇒  B=1.38\times 10^{-3} \ T

(b)...

As we know,

⇒  m=\delta\times L\times \frac{\pi \ d^2}{4}

⇒      =8960\times 1\times \frac{\pi \ (0.001)^2}{4}

⇒      =2240\times \pi \ 0.000001

⇒      =7.037\times 10^{-3} \ kg

You might be interested in
According to Newton’s law of universal gravitation, which statements are true?
Arte-miy333 [17]

Answer: The statement first and the fourth statement are true.

Explanation:

According to Newton's gravitational law, every particle in the universe attracts every other particle with the force of attraction between the masses is directly proportional to the product of the masses and inversely proportional to the square of the distance between them.

As we move to higher altitude, the force of gravity on use decreases because the force of gravity is inversely proportional to the distance.

If the masses of the two objects are more then there will be greater force of gravity between them.

Therefore, the statement first and the fourth statement are true.

7 0
2 years ago
Read 2 more answers
vector A makes equal angles with x,y and z axis. value of its components (in terms of magnitude of vector A will be?
kiruha [24]
X^2+y^2+z^2=A^2
But here XY and Z are all equal so
3X^2=A^2
X=A/(sqrt(3))
Each component is the value of a divided by the square root of three. This way if you square then and add them up it equals a squared
5 0
2 years ago
Read 2 more answers
Imagine you are riding on a yacht in the ocean and traveling at 20 mph. You then hit a golf ball at 100 mph from the deck of the
dangina [55]

According to Einstein's special theory of relativity, the speed of the light in a vacuum is the same no matter the speed with which an observer travels. So the answer should be A) 0,1c (1/10 the speed of light)

4 0
2 years ago
Read 2 more answers
When 30 V is applied across a resistor it generates 600 W of heat: what is the magnitude of its resistance?
grandymaker [24]

Answer:

<h2>1.5 ohms</h2>

Explanation:

Power is expressed as P = V²/R

R = resistance

V = supplied voltage

Given P = 600W and V = 30V

R = V²/P

R = 30²/600

R = 900/600

R = 1.5ohms

magnitude of its resistance is 1.5ohms

3 0
2 years ago
A newly discovered planet has a mean radius of 7380 km. A vehicle on the planet\'s surface is moving in the same direction as th
Butoxors [25]

Answer:

292796435 seconds ≈ 300 million seconds

Explanation:

First of all, the speed of the car is 121km/h = 33.6111 m/s

The radius of the planet is given to be 7380 km = 7380000 m

From the relationship between linear velocity and angular velocity i.e., v=rw, the angular velocity of the car will be w=v/r = 33.6111/7380000 = 0.000000455 rad/s = 4.55 x 10⁻⁶ rad/sec

If the angular velocity of the vehicle about the planet's center is 9.78 times as large as the angular velocity of the planet then we have

w(vehicle) = 9.78 x w(planet)

w(planet) = w(vehicle)/9.78 = 4.55 x 10⁻⁶ / 9.78 = 4.66 x 10⁻⁷ rad/sec

To find the period of the planet's rotation; we use the equation

w(planet) = 2π÷T

Where w(planet) is the angular velocity of the planet and T is the period

From the equation T = 2π÷w = 2×(22/7) ÷  4.66 x 10⁻⁷ = 292796435 seconds

Therefore the period of the planet's motion is 292796435 seconds which is approximately 300, 000, 000 (300 million) seconds

8 0
2 years ago
Other questions:
  • A tennis player who is recovering from an ankle injury and is not allowed to change directions can maintain her cardio fitness l
    12·2 answers
  • Calculate the change in internal energy (δe) for a system that is giving off 25.0 kj of heat and is changing from 12.00 l to 6.0
    10·2 answers
  • A source charge of 3 µC generates an electric field of 2.86 × 105 N/C at the location of a test charge. Using k = 8.99 × 109N.m^
    11·2 answers
  • Atmospheric pressure decreases as altitude increases. in other words, there is more air pushing down on you at sea level, and th
    8·1 answer
  • Your friend states in a report that the average time required to circle a 1.5-mi track was 65.414 s. This was measured by timing
    15·1 answer
  • Which combination of units can be used to express the magnetic field?
    13·1 answer
  • The electric field of a sinusoidal electromagnetic wave obeys the equation E=(375V/m)cos[(1.99×107rad/m)x+(5.97×1015rad/s)t].a.
    13·1 answer
  • An ideally efficient heat pump delivers 1000 J of heat to room air at 300 K. If it extracted heat from 260 K outdoor air, how mu
    10·1 answer
  • Martin is conducting an experiment. His first test gives him a yield of 5.2 grams. His second test gives him a yield of 1.3 gram
    5·1 answer
  • Although human beings have been able to fly hundreds of thousands of miles into outer space, getting inside the earth has proven
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!