answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
leonid [27]
2 years ago
12

A tennis player who is recovering from an ankle injury and is not allowed to change directions can maintain her cardio fitness l

evel by
Physics
2 answers:
Mashcka [7]2 years ago
8 0

Answer:

Explanation: A tennis player who is recovering from an ankle injury and is not allowed to change directions can

O attending a kickboxing class

O lifting weights

riding a stationary bike

taking an aerobics class

Artist 52 [7]2 years ago
7 0
A tennis player who is recovering from an ankle injury and is not allowed to change directions can maintain her cardio fitness level by using the rowing machine, the stationary bike with one leg, or swimming. These activities do not require a change in direction. These activities will not give strain to the injured part.
You might be interested in
Study the free body diagram above. Which scenario below can best be described with this free body diagram? A. a cup is at rest o
vekshin1

Answer: D

Explanation:

5 0
2 years ago
4.A photon of green light strikes an unknown metal and an electron is emitted. The voltage is set to 2 volts. The electron canno
Anarel [89]
4) The correct answer is:
<span>B. An electron will be emitted in the second experiment, but it cannot be determined whether it will reach the second plate. 

In fact, violet light has higher frequency than green light. This means that photons of violet light carry more energy than photons of green light (remember that the energy of a photon is proportional to its frequency: </span>E=hf)<span>, so when they hit the surface of the metal, more energy is transferred to the electrons. The electron was already emitted with green light, so it must be emitted also with violet light, given the more energy transferred. The electron will also have more kinetic energy when hit by violet light, however, we cannot determine if it will reach the second plate, since we don't know how much energy has been used to extract the electron from the metal (in fact, we don't know the work function of the metal, i.e. the energy needed to extract the electron)


3)  The correct answer is
</span><span>A. Violet light will cause electrons to be emitted at greater velocities than those removed by green light.

In fact, </span>violet light has higher frequency than green light. This means that photons of violet light carry more energy than photons of green light (remember that the energy of a photon is proportional to its frequency: E=hf), so when they hit the surface of the metal, more energy is transferred to the electrons. Therefore, the emitted electrons will have on average greater energy (and so, greater velocity) than those removed by green light.
3 0
2 years ago
A 7.0-kilogram cart, A, and a 3.0-kilogram cart, B, are initially held together at rest on a horizontal, frictionless surface. W
7nadin3 [17]
For this problem, we use the conservation of momentum as a solution. Since momentum is mass times velocity, then,

m₁v₁ + m₂v₂ = m₁v₁' + m₂v₂'
where
v₁ and v₂ are initial velocities of cart A and B, respectively
v₁' and v₂' are final velocities of cart A and B, respectively
m₁ and m₂ are masses of cart A and B, respectively

(7 kg)(0 m/s) + (3 kg)(0 m/s) = (7 kg)(v₁') + (3 kg)(6 m/s)
Solving for v₁',
v₁' = -2.57 m/s

<em>Therefore, the speed of cart A is at 2.57 m/s at the direction opposite of cart B.</em>
7 0
2 years ago
A wire of 1mm diameter and 1m long fixed at one end is stretched by 0.01mm when a lend of 10 kg is attached to its free end.calc
Otrada [13]

Answer:

E = 1.25×10¹³ N/m²

Explanation:

Young's modulus is defined as:

E = stress / strain

E = (F / A) / (dL / L)

E = (F L) / (A dL)

Given:

F = 10 kg × 9.8 m/s² = 98 N

L = 1 m

dL = 10⁻⁵ m

A = π/4 (0.001 m)² = 7.85×10⁻⁷ m²

Solve:

E = (98 N × 1 m) / (7.85×10⁻⁷ m² × 10⁻⁵ m)

E = 1.25×10¹³ N/m²

Round as needed.

5 0
2 years ago
A 35 g steel ball is held by a ceiling-mounted electromagnet 4.0 m above the floor. A compressed-air cannon sits on the floor, 4
HACTEHA [7]

Answer:

7.9 m/s

Explanation:

When both balls collide, they have spent the same time for their motions.

Motion of steel ball

This is purely under gravity. It is vertical.

Initial velocity, <em>u </em>= 0 m/s

Distance, <em>s</em> = 4.0 m - 1.2 m = 2.8 m

Acceleration, <em>a</em> = g

Using the equation of motion

s = ut+\frac{1}{2}at^2

2.8 \text{ m} = 0+\dfrac{gt^2}{2}

t = \sqrt{\dfrac{5.6}{g}}

Motion of plastic ball

This has two components: a vertical and a horizontal.

The vertical motion is under gravity.

Considering the vertical motion,

Initial velocity, <em>u </em>= ?

Distance, <em>s</em> = 1.2 m

Acceleration, <em>a</em> = -<em>g                   </em> (It is going up)

Using the equation of motion

s = ut+\frac{1}{2}at^2

1.2\text{ m} = ut-\frac{1}{2}gt^2

Substituting the value of <em>t</em> from the previous equation,

1.2\text{ m} = u\sqrt{\dfrac{5.6}{g}}-\dfrac{1}{2}\times g\times\dfrac{5.6}{g}

u\sqrt{\dfrac{5.6}{g}} = 4.0

Taking <em>g</em> = 9.8 m/s²,

u = \dfrac{4.0}{0.756} = 5.29 \text{ m/s}

This is the vertical component of the initial velocity

Considering the horizontal motion which is not accelerated,

horizontal component of the initial velocity is horizontal distance ÷ time.

u_h = \dfrac{4.4\text{ m}}{0.756\text{ s}} = 5.82\text{ m/s}

The initial velocity is

v_i = \sqrt{u^2+u_h^2} = \sqrt{(5.29\text{ m/s})^2+(5.82\text{ m/s})^2} = 7.9 \text{ m/s}

4 0
2 years ago
Other questions:
  • A novice pilot sets a plane’s controls, thinking the plane will fly at 2.50 × 102 km/h to the north. if the wind blows at 75 km/
    15·1 answer
  • 1) A fan is to accelerate quiescent air to a velocity of 8 m/s at a rate of 9 m3/s. Determine the minimum power that must be sup
    13·1 answer
  • An airplane flying parallel to the ground undergoes two consecutive dis- placements. The first is 75 km 30.0° west of north, and
    9·1 answer
  • A 15.0-Ω resistor and a coil are connected in series with a 6.30-V battery with negligible internal resistance and a closed swit
    14·1 answer
  • A uniform piece of wire, 20 cm long, is bent in a right angle in the center to give it an L-shape. How far from the bend is the
    15·2 answers
  • A 10. g cube of copper at a temperature T1 is placed in an insulated cup containing 10. g of water at a temperature T2. If T1 &g
    12·1 answer
  • You are working on charge-storage devices for a research center. Your goal is to store as much charge on a given device as possi
    5·1 answer
  • You are driving along a highway at 35.0 m/s when you hear the siren of a police car approaching you from behind and you perceive
    15·1 answer
  • Modifiable strength improvement factors include all of the following except...??
    12·1 answer
  • .. Eugene wants to ride his bike at least 40 miles today. The first hour was
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!