answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
PIT_PIT [208]
2 years ago
15

The capacitors in each circuit are fully charged before the switch is closed. Rank, from longest to shortest, the length of time

the bulbs (resistors) stay lit in each circuit.
Physics
1 answer:
8_murik_8 [283]2 years ago
3 0

The concept used in this is circuit analysis using the simplification of resistors and capacitors.

Explanation:

The time constant for each of the circuits in figure A, B, C, D and E. Therefore, rank the length of time the bulbs stay lit from longest to shortest by using the value of time constant for each circuit. The rank of the time constant of the circuit is C > A = E > B > DC  > A = E > B > D.

Capacitance is the central concept in electrostatics and constructed devices called capacitors are essential elements of electronic circuits.

If more charge is placed on the conductor the voltage increases proportionately. The ratio of the charge to the voltage is called the capacitance C of the conductor C= q/v.

The resistance increases if you add resistors in series and decreases if you add them in parallel. on the other hand the capacitors increases if it is added parallel and decreases if added in series. hence the circuit longest time constant takes longest time to discharge.

You might be interested in
Why is the following situation impossible? Two identical dust particles of mass 1.00 µg are floating in empty space, far from an
Igoryamba

Answer:

This is a conceptual problem so I will try my best to explain the impossible scenario. First of all the two dust particles ara virtually exempt from any external forces and at rest with respect to each other. This could theoretically happen even if it's difficult for that to happen. The problem is that each of the particles have an electric charge which are equal in magnitude and sign. Thus each particle should feel the presence of the other via a force. The forces felt by the particles are equal and opposite facing away from each other so both charges have a net acceleration according to Newton's second law because of the presence of a force in each particle:

a=\frac{F}{m}

Having seen Newton's second law it should be clear that the particles are actually moving away from each other and will not remain at rest with respect to each other. This is in contradiction with the last statement in the problem.

4 0
1 year ago
The block in the diagram below is AT REST. However, the tension in the cable is not the only thing holding the block back. Stati
Vedmedyk [2.9K]

Answer:

The  tension in the rope is 229.37 N.

Explanation:

Given:

Mass of the block is, m=33.2\ kg

Coefficient of static friction is, \mu = 0.214

Angle of inclination is, \theta = 31.5°

Draw a free body diagram of the block.

From the free body diagram, consider the forces in the vertical direction perpendicular to inclined plane.

Forces acting are mg\cos \theta and normal N. Now, there is no motion in the direction perpendicular to the inclined plane. So,

N=mg\cos \theta\\N=(33.2)(9.8)\cos (31.5)\\N=277.415\ N

Consider the direction along the inclined plane.

The forces acting along the plane are mg\sin \theta and frictional force, f, down the plane and tension, T, up the plane.

Now, as the block is at rest, so net force along the plane is also zero.

T=mg\sin \theta+f\\T=mg\sin \theta +\mu N\\T= (33.2)(9.8)(\sin (31.5)+(0.214\times 277.415)\\T= 170+59.37\\T=229.37\ N

Therefore, the  tension in the rope is 229.37 N.

3 0
1 year ago
In the ENGR 10 lab (E391), there are 50 long light bulbs (P=100 W) and 30 regular bulbs (P=60 W). How much energy is consumed li
Alenkinab [10]

Answer:

Total energy saving will be 0.8 KWH

Explanation:

We have given there are 50 long light bulbs of power 100 W so total power of 50 bulb = 100×50 = 5000 W = 5 KW

30 bulbs are of power 60 W

So total power of 30 bulbs = 30×60 = 1800 W = 1.8 KW

Total power of 80 bulbs = 1.8+5 = 6.8 KW

Total time = 3 hour

We know that energy E=power\times time=6.8\times 3=20.4KWH

Now power of each CFL bulb = 25 W

So power of 80 bulbs = 80×25 = 2000 W = 2 KW

Energy of 80 bulbs = 2×3 = 6 KWH

So total energy saving = 6.8-6 = 0.8 KWH

6 0
2 years ago
Which statement is true?
iogann1982 [59]
B 
Think of inertia of getting into a car accident without a seat belt although the car stops you will not you would likely fly out the window
7 0
1 year ago
Read 2 more answers
A) The current theory of the structure of the Earth, called plate tectonics, tells us that the continents are in constant motion
suter [353]

A) The mass of the continent is 2.5\cdot 10^{21} kg

B) The kinetic energy is 2016 J

C) The speed of the jogger should be 7.1 m/s

Explanation:

A)

The mass of the continent can be calculated as

m = \rho V

where

\rho = 2800 kg/m^3 is its density

V is its volume

We have to calculate its volume. We know that the continent is represented as a slab of side 5900 km (so its surface is 5900 x 5900, assuming it is a square) and depth of 26 km, so its volume is:

V=(5900 km)^2 (26 km)=9.05\cdot 10^8 km^3 =9.05 \cdot 10^8 \cdot (10^9 m^3/k^3)=9.05\cdot 10^7 m^3

So, the mass of the continent is

m=\rho V = (2800)(9.05\cdot 10^{17})=2.5\cdot 10^{21} kg

B)

The kinetic energy of a body is given by

K=\frac{1}{2}mv^2

where

m is the mass of the body

v is its speed

For the continent, we have:

m=2.5\cdot 10^{21} kg is the mass

v=4 cm/year is the speed

We have to convert the speed into SI units. we have:

1 cm = 0.01 m

1 year = (365)(24)(60)(60) s = 3.15\cdot 10^7 s

So, the speed is

v=4 cm/year = 0.04 m/year \cdot \frac{1}{3.15\cdot 10^7}=1.27\cdot 10^{-9} m/s

Therefore, the kinetic energy is

K=\frac{1}{2}(2.5\cdot 10^{21} kg)(1.27\cdot 10^{-9} m/s)^2=2016 J

C)

Again, the kinetic energy of an object is

K=\frac{1}{2}mv^2

For the jogger in this problem, his mass is

m = 80 kg

And we want its kinetic energy to be equal to that of the continent, so

K = 2016 J

Re-arranging the equation for v, we find what speed the jogger needs to have this kinetic energy:

v=\sqrt{\frac{2K}{m}}=\sqrt{\frac{2(2016)}{80}}=7.1 m/s

Learn more about kinetic energy here:

brainly.com/question/6536722

#LearnwithBrainly

8 0
2 years ago
Other questions:
  • One beam of electrons moves at right angles to a magnetic field. the force on these electrons is 4.9 x 10-14 newtons. a second b
    13·1 answer
  • a 2 meter tall astronaut standing on mars drops her glasses from her nose. how long will the astronaut have before he hits the g
    13·1 answer
  • What is the minimum frequency of light necessary to emit electrons from titanium via the photoelectric effect?
    6·2 answers
  • Buffalo, New York, experienced a snowstorm November 13–21, 2014. Residents refer to the event as “Snowvember.” What was the like
    10·2 answers
  • The current supplied by a battery slowly decreases as the battery runs down. Suppose that the current as a function of time is:
    6·1 answer
  • A 15-g bullet moving at 300 m/s passes through a 2.0 cm thick sheet of foam plastic and emerges with a speed of 90 m/s. Let's as
    14·1 answer
  • A new planet is discovered beyond Pluto at a mean distance to the sun of 4004 million miles. Using Kepler's third law, determine
    7·1 answer
  • A meter stick balances horizontally on a knife-edge at the 50.0cm mark. With two 5.0g coins stacked over the 12.0cm mark l, the
    11·1 answer
  • 2. Which are most closely associated with an element on the periodic table?
    15·2 answers
  • A stable orbit is an orbit that repeats indefinitely, without ever changing shape. After running several simulations with differ
    9·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!