Answer:
Explanation:
The energy stored in the spring is used to throw the ball upwards . Let the height reached be h
stored energy of spring = 1/2 k y² , k is spring constant and y is compression created in the spring
stored energy of spring = potential energy of the ball
1/2 k y² = mgh , m is mass of the ball , h is height attained by ball
.5 k x .055² = .025 x 2.84
.0015125 k = .071
k = .071 / .0015125
= 46.9 N / m .
Answer:
Explanation:
a ) No of turns per metre
n = 450 / .35
= 1285.71
Magnetic field inside the solenoid
B = μ₀ n I
Where I is current
B = 4π x 10⁻⁷ x 1285.71 x 1.75
= 28.26 x 10⁻⁴ T
This is the uniform magnetic field inside the solenoid.
b )
Magnetic field around a very long wire at a distance d is given by the expression
B = ( μ₀ /4π ) X 2I / d
= 10⁻⁷ x 2 x ( 1.75 / .01 )
= .35 x 10⁻⁴ T
In the second case magnetic field is much less. It is due to the fact that in the solenoid magnetic field gets multiplied due to increase in the number of turns. In straight coil this does not happen .
Answer:
45 meters
Explanation:
20 min = 15 meters
So if 20 x 3 = 60
you have to do 3 x 15 !
- which equals to 45 <3
<u>- mark me brainlest pls . </u>
Answer:
Its traveling in the +x direction
Explanation:
The E-field is in the +y-direction, and the B-field is in the +z-direction, so it must be moving along the +x-direction, since the E-field, B-field and the direction of moving are all at right angles to each other.
Answer:
Mass will be 4.437 kg
Explanation:
We have given force constant k = 7 N/m
Time period of oscillation T = 5 sec
So angular frequency 
We know that angular frequency is given by


Squaring both side

m = 4.437 kg