Answer:
Tension in the string will increase
Explanation:
As we know that tension in the string at any angle with the vertical is given as

now we have

also we know that
angular speed of the stone is directly depending on the time period of the motion
so it is given as

since the frequency of the revolution is increased from n = 1 rev/s to 2 rev/s
so the angular speed would be doubled
So here we can say that
tension in the string will increase when we will increase the frequency of revolution.
Answer:
Wet surfaces areaA=+25.3ft^2
Explanation:
Using F= K×A× S^2
Where F= drag force
A= surface area
S= speed
Given : F=996N S=20mph A= 83ft^2
K = F/AS^2=996/(83×20^2)
K= 996/33200 = 0.03
1215= (0.03)× A × 18^2
1215=9.7A
A=1215/9.7=125.3ft^2
Answer
given,
change in enthalpy = 51 kJ/mole
change in activation energy = 109 kJ/mole
when a reaction is catalysed change in enthalpy between the product and the reactant does not change it remain constant.
where as activation energy of the product and the reactant decreases.
example:
ΔH = 51 kJ/mole
E_a= 83 kJ/mole
here activation energy decrease whereas change in enthalpy remains same.
The braking force is -400 N
Explanation:
We can solve this problem by using the impulse theorem, which states that the impulse applied on the ferry (the product of force and time) is equal to its change in momentum:

where in this problem, we have:
F is the force applied by the brakes
is the time interval
m = 13,000 kg is the mass of the ferry
u = 2.0 m/s is the initial velocity
v = 0 is the final velocity
And solving for F, we find the force applied by the brakes:

where the negative sign indicates that the direction is backward.
Learn more about impulse:
brainly.com/question/9484203
#LearnwithBrainly
Answer:1. Roche limit
2.hydrogen
3.atmosphere
4.mercury
5.venus
6.when an object passes the Roche limit, the strength of gravity on the object increases. If the density of the planet is higher, then the object can break up farther away from the planet. If the density is lower, then the Roche limit is located closer to the planet
7.Farther our in the solar system, beyond the frost line, hydrogen was at a low enough temperature that it could condense. This allowed hydrogen to accumulate under gravity, eventually forming the Jovian planets
Explanation: