answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Gala2k [10]
2 years ago
7

Two objects are placed in thermal contact and are allowed to come to equilibrium in isolation. the heat capacity of object a is

three times the heat capacity of object b and the initial temperature of object a (ta) is twice the initial temperature of object b (tb). 1) what will the final temperature of the two-object system be?
Physics
1 answer:
Harman [31]2 years ago
7 0
Given:
Ca = 3Cb                      (1)
where
Ca =  heat capacity of object A
Cb =  heat capacity f object B

Also,
Ta = 2Tb                     (2)
where
Ta = initial temperature of object A
Tb = initial temperature of object B.

Let
Tf =  final equilibrium temperature of both objects,
Ma = mass of object A,
Mb = mass of object B.

Assuming that all heat exchange occurs exclusively between the two objects, then energy balance requires that
Ma*Ca*(Ta - Tf) = Mb*Cb*(Tf - Tb)           (3)

Substitute (1) and (2) into (3).
Ma*(3Cb)*(2Tb - Tf) = Mb*Cb*(Tf - Tb)
3(Ma/Mb)*(2Tb - Tf) = Tf - Tb

Define k = Ma/Mb, the ratio f the masses.
Then
3k(2Tb - Tf) = Tf - Tb
Tf(1+3k) = Tb(1+6k)
Tf = [(1+6k)/(1+3k)]*Tb

Answer:
T_{f} =( \frac{1+6k}{1+3k} )T_{b}= \frac{1}{2}( \frac{1+6k}{1+3k})T_{a}
where
k= \frac{M_{a}}{M_{b}} 
You might be interested in
A visitor to the observation deck of a skyscraper manages to drop a penny over the edge. As the penny falls faster, the force du
pentagon [3]
If a coin is dropped at a relatively low altitude, it's acceleration remains constant. However, if the coin is dropped at a very high altitude, air resistance will have a significant effect. The initial acceleration of the coin will be the greatest. As it falls down, air resistance will counteract the weight of the coin. So, the acceleration will decrease. Although the acceleration decreases, the coin still accelerates, that is why it falls faster. When the air resistance fully counters the weight of the coin, the acceleration will become zero and the coin will fall at a constant speed (terminal velocity). So, the answer should be, The acceleration decreases until it reaches 0. The closest answer is.
a. The acceleration decreases.
8 0
2 years ago
Read 2 more answers
A series of waves with decreasing wavelength labeled radio waves, microwaves, infrared, visible light, ultraviolet, X-rays, gamm
kotegsom [21]

Answer:

label A= radio waves, label C= infrared, Label D= visible Light, Label G= gamma rays.

Explanation:

hope it helped??

can i have a thanks, a 5 star, and a brainliest please

can we be friends  

6 0
2 years ago
Read 2 more answers
Case 1: A DJ starts up her phonograph player. The turntable accelerates uniformly from rest, and takes t₁ = 11.9 seconds to get
olga_2 [115]

Answer:

Part a)

\omega = 8.17 rad/s

Part b)

N = 7.74 rev

Part c)

\alpha = 0.69 rad/s^2

Part d)

\alpha = 0.48 rad/s^2

Part e)

t = 9.14 s

Explanation:

Part a)

Angular speed is given as

\omega = 2\pi f

\omega = 2\pi(\frac{78}{60})

\omega = 8.17 rad/s

Part b)

Since turn table is accelerating uniformly

so we will have

\theta = \frac{\omega_f + \omega_i}{2} t

\theta = \frac{8.17 + 0}{2}(11.9)

2N\pi = 48.6

N = 7.74 rev

Part c)

angular acceleration is given as

\alpha = \frac{\omega_f - \omega_i}{t}

\alpha = \frac{8.17 - 0}{11.9}

\alpha = 0.69 rad/s^2

Part d)

When its angular speed changes to 120 rpm

then we will have

\omega_2 = 2\pi (\frac{120}{60})

\omega_2 = 12.56 rad/s

number of turns revolved is 15 times

so we have

\omega_f^2 - \omega_i^2 = 2 \alpha \theta

12.56^2 - 8.17^2 = 2\alpha (2\pi\times 15)

\alpha = 0.48 rad/s^2

Part e)

now for uniform acceleration we have

\omega_f - \omega_i = \alpha t

12.56 - 8.17 = 0.48 t

t = 9.14 s

7 0
2 years ago
A record is dropped vertically onto a freely rotating (undriven) turntable. Frictional forces act to bring the record and turnta
BartSMP [9]

Answer:

35%

Explanation:

Assuming no external torques present during the collision between the record and the turntable, total angular momentum must be conserved.

For a rotating body with some angular velocity and moment of inertia, the angular momentum can be expressed as follows;

L = I* ω

So, as initial angular momentum and final angular momentum must be the same, we have:

Li = Lf

⇒ I₁ * ω₁ = I₂ * ω₂ (1)

where I₁ is the rotational inertia of the turntable, and I₂, is the combined rotational inertia of the turntable and the record:

I₂ = I₁ + 0.54 I₁ = 1.54 I₁

We can solve (1) for the new common angular speed, as follows:

ω₂ = ω₁ / 1.54 (2)

The initial rotational kinetic energy is given by definition for the following equation:

Kroti = 1/2 * I₁ * ω₁² (3)

The final rotational kinetic  energy takes into account the new rotational inertia and the common final angular speed:

Krotf = 1/2* I₂ * ω₂² = 1/2* 1.54 I₁* (ω₁/1.54)² (4)

Dividing both sides in (3) and (4), we get:

Krotf/Kroti = 1/1.54 = 0.65

This means that the final rotational kinetic energy, has reduced to 0.65 of the initial value, or that has lost 35% of the initial kinetic energy.

8 0
2 years ago
A 10-turn coil of wire having a diameter of 1.0 cm and a resistance of 0.50 Ω is in a 1.0 mT magnetic field, with the coil orien
n200080 [17]

Answer:

The voltage across the capacitor is 1.57 V.

Explanation:

Given that,

Number of turns = 10

Diameter = 1.0 cm

Resistance = 0.50 Ω

Capacitor = 1.0μ F

Magnetic field = 1.0 mT

We need to calculate the flux

Using formula of flux

\phi=NBA

Put the value into the formula

\phi=10\times1.0\times10^{-3}\times\pi\times(0.5\times10^{-2})^2

\phi=7.85\times10^{-7}\ Tm^2

We need to calculate the induced emf

Using formula of induced emf

\epsilon=\dfrac{d\phi}{dt}

Put the value into the formula

\epsilon=\dfrac{7.85\times10^{-7}}{dt}

Put the value of emf from ohm's law

\epsilon =IR

IR=\dfrac{7.85\times10^{-7}}{dt}

Idt=\dfrac{7.85\times10^{-7}}{R}

Idt=\dfrac{7.85\times10^{-7}}{0.50}

Idt=0.00000157=1.57\times10^{-6}\ C

We know that,

Idt=dq

dq=1.57\times10^{-6}\ C

We need to calculate the voltage across the capacitor

Using formula of charge

dq=C dV

dV=\dfrac{dq}{C}

Put the value into the formula

dV=\dfrac{1.57\times10^{-6}}{1.0\times10^{-6}}

dV=1.57\ V

Hence, The voltage across the capacitor is 1.57 V.

5 0
2 years ago
Other questions:
  • A 15g bullet travelling at 100m/s strikes and is absorbed by a 75kg object. Find the speed at which the final object moves.
    5·1 answer
  • A net force of 125 n is applied to a certain object. as a result, the object accelerates with an acceleration of 24.0 m/s2. the
    12·2 answers
  • The drawing shows the top view of a door that is 1.68 m wide. two forces are applied to the door as indicated. what is the magni
    14·1 answer
  • Tony uses the device shown in the diagram to model how an electromagnet is used in his uncle’s scrap metal yard. After picking u
    14·2 answers
  • Write a hypothesis about the effect of increasing voltage on the current in the circuit. Use the "if . . . then . . . because .
    10·2 answers
  • You decide it is time to clean your pool since summer is quickly approaching. Your pool maintenance guide specifies that the chl
    6·1 answer
  • What is the displacement of a runner who is running at 0.5km/h for 3 hours due north
    12·1 answer
  • Anna Litical and Noah Formula are experimenting with the effect of mass and net force upon the acceleration of a lab cart. They
    11·1 answer
  • A mover uses a ramp to load a crate of nails onto a truck. The crate, which must be lifted 1.5 m from the street to the bed of t
    7·1 answer
  • A toroidal solenoid has an inner radius of 12.0 cm and an outer radius of 15.0 cm . It carries a current of 1.50 A . Part A How
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!