Refer to the diagram shown below.
i = the current in the circuit., A
R₁ = the internal resistance of the battery, Ω
R₂ = the resistance of the 60 W load, Ω
Because the resistance across the battery is 8.5 V instead of 9.0 V, therefore
(R₁ )(i A) = 9 - 8.5 = (0.5 V)
R₁*i = 0.5 (10
Also,
R₂*i = 9.5 (2)
Because the power dissipated by R₂ is 60 W, therefore
i²R₂ = 60
From (2), obtain
i*9.5 = 60
i = 6.3158 A
From (1), obtain
6.3158*R₁ = 0.5
R₁ = 0.5/6.3158 = 0.0792 Ω = 0.08 Ω (nearest hundredth)
Answer: 0.08 Ω
"If one increases the force on an object, its acceleration increases too because the push it feels is greater"
We have the 2nd law of Newton that relates the 3 concepts; F=m*a. We have that if the mass of an object increases (put weight in luggage), the accelearation decreases; in fact it is inversely proportional to the mass. Hence if the mass is doubled, acceleration is halved. Accelerations is proportional to force; if one doubles the force, the acceleration doubles too.
The big bang produced dark energy, which accounts for some of the energy needed to expand the universe.
The vastness of space may contain a type of matter known as “dark matter.”
The universe is currently expanding at an accelerating rate.
Hope this helps !
F=ma
m=total mass = 2300kg+2500kg=4800
F=18000N
a=?
a=F/m
a=18000/4800
a=3.8m/s^2
Final answer
Answer:
<em>The final charge on the 6.0 mF capacitor would be 12 mC</em>
Explanation:
The initial charge on 4 mF capacitor = 4 mf x 50 V = 200 mC
The initial Charge on 6 mF capacitor = 6 mf x 30 V =180 mC
Since the negative ends are joined together the total charge on both capacity would be;
q = 
q = 200 - 180
q = 20 mC
In order to find the final charge on the 6.0 mF capacitor we have to find the combined voltage
q = (4 x V) + (6 x V)
20 = 10 V
V = 2 V
For the final charge on 6.0 mF;
q = CV
q = 6.0 mF x 2 V
q = 12 mC
Therefore the final charge on the 6.0 mF capacitor would be 12 mC