answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
mestny [16]
2 years ago
7

A ladybug sits at the outer edge of a turntable, and a gentleman bug sits halfway between her and the axis of rotation. The turn

table (initially at rest) begins to rotate with its rate of rotation constantly increasing.
Physics
2 answers:
Cerrena [4.2K]2 years ago
7 0

Answer:

e. Not enough information to determine

Explanation:

This question is incomplete. Here is the complete question with my solution afterwards;

A ladybug sits at the outer edge of a turntable, and a gentleman bug sits halfway between her and the axis of rotation. The turntable (initially at rest) begins to rotate with its rate of rotation constantly increasing.

What is the first event that will occur?(Assume non-zero frictional force and the same coefficients of friction for both bugs.)

a. The ladybug begins to slide

b. The gentleman bug begins to slide

c. Both bugs begin to slide at the same time

d. Nothing ever happens

e. Not enough information to determine

The centripetal force acting on a rotating body or bugs can be written as,

F=mrw^2

m= mass of the corresponding bugs

r= corresponding radial distance of each bug

w= angular speed of the turntable

The centripetal force tries to slide the bugs in an outward direction and it is directly proportional to the products of its mass and radial distance from the axis of rotation of the turntable

F ∝ mr

Since the radial distance from the axis of rotation of the turntable for each bug is given, but the mass is not given, the given information is therefore not enough to determine which bugs will slide first.

Option "e" is correct.

Paladinen [302]2 years ago
5 0

Answer:

What is the first event that will occur? Assume non zero Nonzero frictional force and the same coefficient of friction for both bugs  

a. The lady bug begins to slide  

b. The gentleman bug begins to slide

c. Both bugs begin  to slide at the same time

d. Nothing ever happens  

e. Not enough information to determine  

The correct answer to the question is

a. The lady bug begins to slide  

Explanation:

To solve the question we have to write out the forces acting on the bugs

The frictional force is given by

f = μN = m×g×μ and the centripetal force is given by F_c=\frac{mv^2}{r}

For equilibrium the two forces are equal and the bugs remain, that is

m×g×μ = \frac{mv^2}{r} canceling like terms gives g×μ = \frac{v^2}{r}= ω²r

Therefore as the acceleration increases the centripetal force will eventually exceed the frictional force

therefore for the ladybug, if the distance from the center = r then

g×μ = ω²r

while for the gentleman bug we have the radius = r/2, therefore

g×μ = ω²r/2 or the centripetal force is half of that of the ladybug hence the effect of the frictional force is grater on the gentleman bug than on the ladybug for the same angular velocity

which means the ladybug begins to slide first as it has two times the centripetal force of the gentleman bug to overcome the force of friction

You might be interested in
A 0.242 g sample of potassium is heated in oxygen. The result is 0.292 g of a crystalline compound. What is the formula of this
masha68 [24]

Answer:

Hello there Dude answer is B :D hope it helped mark me brainliest.

8 0
2 years ago
what is the acceleration of a bowling ball that starts at rest and moves 300m down the gutter in 22.4 sec
exis [7]
<span>Acceleration is the change in velocity divided by time taken. It has both magnitude and direction. In this problem, the change in velocity would first have to be calculated. Velocity is distance divided by time. Therefore, the velocity here would be 300 m divided by 22.4 seconds. This gives a velocity of 13.3928 m/s. Since acceleration is velocity divided by time, it would be 13.3928 divided by 22.4, giving a final solution of 0.598 m/s^2.</span>
7 0
2 years ago
Ariel dropped a golf ball from her second story window. The ball starts from rest and hits the sidewalk 3.5 s later with a veloc
Aleks [24]

Answer:

By using the acceleration formula,

a =  \frac{v - u}{t}

a =  \frac{14.7 - 0}{3.5}

a = 4.2m \: s ^{ - 2}

4 0
2 years ago
A 5.0-n projectile leaves the ground with a kinetic energy of 220 j. at the highest point in its trajectory, its kinetic energy
NikAS [45]
First, we get the difference between the kinetic energies such that,
             difference = (220J - 120J)
             difference = 100 J
The difference in kinetic energy is the equivalent of the potential energy which is calculated through the equation,
              PE = mgh
To calculate for the height, we derive the equation in a form,
           h = PE/mg
The product of the mass and acceleration due to gravity is the weight. 
                   h = (100 J) / (5 N)
                   h = 20 m

<em>Hence, the answer is 20 m. </em>
3 0
2 years ago
A figure skater rotating at 5.00 rad/s with arms extended has a moment of inertia of 2.25 kg·m2. If the arms are pulled in so t
Serggg [28]

a) 6.25 rad/s

The law of conservation of angular momentum states that the angular momentum must be conserved.

The angular momentum is given by:

L=I\omega

where

I is the moment of inertia

\omega is the angular speed

Since the angular momentum must be conserved, we can write

L_1 = L_2\\I_1 \omega_1 = I_2 \omega_2

where we have

I_1 = 2.25 kg m^2 is the initial moment of inertia

\omega_1 = 5.00 rad/s is the initial angular speed

I_2 = 2.25 kg m^2 is the final moment of inertia

\omega_2 is the final angular speed

Solving for \omega_2, we find

\omega_2 = \frac{I_1 \omega_1}{I_2}=\frac{(2.25 kg m^2)(5.00 rad/s)}{1.80 kg m^2}=6.25 rad/s

b) 28.1 J and 35.2 J

The rotational kinetic energy is given by

K=\frac{1}{2}I\omega^2

where

I is the moment of inertia

\omega is the angular speed

Applying the formula, we have:

- Initial kinetic energy:

K=\frac{1}{2}(2.25 kg m^2)(5.00 rad/s)^2=28.1 J

- Final kinetic energy:

K=\frac{1}{2}(1.80 kg m^2)(6.25 rad/s)^2=35.2 J

7 0
2 years ago
Other questions:
  • An amusement park ride spins you around in a circle of radius 2.5 m with a speed of 8.5 m/s. If your mass is 75 kg, what is the
    5·2 answers
  • Consider a father pushing a child on a playground merry-go-round. the system has a moment of inertia of 84.4 kg · m2. the father
    12·2 answers
  • An object moving on the x axis with a constant acceleration increases its x coordinate by 82.9 m in a time of 2.51 s and has a v
    7·1 answer
  • two forces are acting on a wheelbarrow. One force is pushing to the right and an equal force is pushing to the left. What can yo
    15·2 answers
  • Voices of swimmers at a pool travel 400 m/s through the air and 1,600 m/s underwater. The wavelength changes from 2 m in the air
    13·2 answers
  • A 2.80 kg mass is dropped from a height of 4.50 m. find its potential energy(PE) at the moment it is dropped. PLEASE HELP
    6·1 answer
  • On a nice summer day,Kim takes her niece Madison for a walk in her stroller.If they start from rest and accelerate at a rate of
    14·1 answer
  • Three magnets are placed on a plastic stick as shown in the image. Explain how the magnets need to be rearranged so that they st
    15·2 answers
  • I need help ASAP
    10·1 answer
  • Which optical device can focus light to a point through reflection?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!