answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Oliga [24]
2 years ago
15

Two conducting spheres, one having twice the diameter of the other, are separated by a distance that is large compared to their

diameters. The smaller sphere has charge q and the larger sphere is uncharged. If the spheres are connected by a long, thin wire, then after a sufficiently long time:
a.The two spheres are at the same potential.
b. The electric field at the surface of the two spheres has the same magnitude.
c. The two spheres have the same charge.
d.The larger sphere is at twice the potential of the smaller sphere.
e.The smaller sphere is at twice the potential of the larger sphere.
Physics
1 answer:
Snezhnost [94]2 years ago
6 0

Answer: Option (a) is the correct answer.

Explanation:

When these two conducting spheres are connected together through a thin wire then charge from the smaller sphere will travel through the wire. And, this charge will continue to travel towards the neutral sphere until the charge on both the spheres will become equal to each other.

For example, charge on small sphere is 5 C then this charge will continue to travel towards the neutral sphere until its charge also becomes equal to 5 C.

Hence, then their potential will also become equal.

Thus, we can conclude that the spheres are connected by a long, thin wire, then after a sufficiently long time the two spheres are at the same potential.

You might be interested in
In the design of a timing mechanism, the motion of pin P in the fixed circular slot is controlled by the guide A, which is being
german

Answer: Got It!

<em>Explanation:</em> Guide A Starts From Rest With Pin P At The Lowest Point In The Circular Slot, And Accelerates Upward At A Constant Rate Until It Reaches A Speed Of 175 Mm/s At The ... In the design of a timing mechanism, the motion of pin P in the fixed circular slot is controlled by the guide A, which is being elevated by its lead screw.

6 0
2 years ago
Two billiard balls of equal mass are traveling straight toward each other with the same speed. They meet head-on in an elastic c
Rus_ich [418]

Answer:

0 kg m/s before and after collision

Explanation:

Let m, v be the mass and speed of the 2 balls, respectively, before the collision. Since they have the same mass and same speed but in opposite direction, the total momentum of the system would be:

P = mv - mv = 0 kg m/s

As the collision is elastic. The total momentum after the collision is the same as the total momentum before the collision, which is 0.

5 0
2 years ago
Which of these is the most effective way for Leanna to cool down after an intense bike ride
Sonja [21]
I am pretty sure the answer would be too stretch
6 0
2 years ago
A Micro –Hydro turbine generator is accelerating uniformly from an angular velocity of 610 rpm to its operating angular velocity
Salsk061 [2.6K]

Answer:

Angular displacement of the turbine is 234.62 radian

Explanation:

initial angular speed of the turbine is

\omega_i = 2\pi f_1

\omega_1 = 2\pi(\frac{610}{60})

\omega_1 = 63.88 rad/s

similarly final angular speed is given as

\omega_f = 2\pi f_2

\omega_2 = 2\pi(\frac{837}{60})

\omega_2 = 87.65 rad/s

angular acceleration of the turbine is given as

\alpha = 5.9 rad/s^2

now we have to find the angular displacement is given as

\theta = \omega t + \frac{1}{2}\alpha t^2

\theta = (63.88)(3.2) + (\frac{1}{2})(5.9)(3.2^2)

\theta = 234.62 radian

3 0
2 years ago
Driving your Ferrari through the Italian countryside at a speedy 88 m/s, you approach an opera diva singing a high C (1,046 Hz).
MrRissso [65]

Answer:

You will hear the note E₆

Explanation:

We know that:

Your speed = 88m/s

Original frequency = 1,046 Hz

Sound speed = 340 m/s

The Doppler effect says that:

f' = \frac{v \pm v0 }{v \mp vs}*f

Where:

f = original frequency

f' = new frequency

v = velocity of the sound wave

v0 = your velocity

vs = velocity of the source, in this case, the source is the diva, we assume that she does not move, so vs = 0.

Replacing the values that we know in the equation we have:

f' = \frac{340 m/s + 88m/s}{340 m/s} *1,046 Hz = 1,316.73 Hz

This frequency is close to the note E₆ (1,318.5 Hz)

7 0
1 year ago
Other questions:
  • Imagine you want to get 1 kcal of energy from a cow. How much energy would the cow need to get from plants? Why?
    8·1 answer
  • A baseball weighs 5.19 oz. what is the kinetic energy, in joules, of this baseball when it is thrown by a major-league pitcher a
    8·2 answers
  • The lighting needs of a storage room are being met by six fluorescent light fixtures, each fixture containing four lamps rated a
    14·1 answer
  • A very long, straight wire has charge per unit length 3.50×10^−10 C/m . At what distance from the wire is the electricfield magn
    11·1 answer
  • When a 100-Ω resistor is connected across the terminals of a battery of emf ε and internal resistance r, the battery delivers 0.
    9·1 answer
  • A wind turbine with a rotor diameter of 40 m produces 90 kW of electrical power when the wind speed is 8 m/s. The density of air
    14·1 answer
  • A rabbit is trying to cross the street. Its velocity v as a function of time t is given in the graph below where
    7·1 answer
  • Rahul sees a flock of birds. He watches as the flying birds land in neat little rows on several power lines. Which change of sta
    10·2 answers
  • Un pendule est constitue par une masse ponctuelle m= 0,1kg accrocher a un fil sans masse de longueur L = 0,4 m on ecarte ce pend
    8·1 answer
  • If the ball is 0.60 mm from her shoulder, what is the tangential acceleration of the ball? This is the key quantity here--it's a
    6·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!