Answer:
the wavelength λ of the light when it is traveling in air = 560 nm
the smallest thickness t of the air film = 140 nm
Explanation:
From the question; the path difference is Δx = 2t (since the condition of the phase difference in the maxima and minima gets interchanged)
Now for constructive interference;
Δx= 
replacing ;
Δx = 2t ; we have:
2t = 
Given that thickness t = 700 nm
Then
2× 700 =
--- equation (1)
For thickness t = 980 nm that is next to constructive interference
2× 980 =
----- equation (2)
Equating the difference of equation (2) and equation (1); we have:'
λ = (2 × 980) - ( 2× 700 )
λ = 1960 - 1400
λ = 560 nm
Thus; the wavelength λ of the light when it is traveling in air = 560 nm
b)
For the smallest thickness 
∴ 



Thus, the smallest thickness t of the air film = 140 nm
Inversely proportional to its frequency. If electromagnetic radiation A has a lower frequency than electromagnetic B, then compared to B, the wavelength of A is...? - equal - shorter - longer - exactly half the length of
Answer:4.05 s
Explanation:
Given
First stone is drop from cliff and second stone is thrown with a speed of 52.92 m/s after 2.7 s
Both hit the ground at the same time
Let h be the height of cliff and it reaches after time t

For second stone
---2
Equating 1 &2 we get





Answer:
178200
g mile pounds
Explanation:
Work= Force * Distance= Fh
F=ma=mg where m is mass and g is acceleration due to gravity
Work= 165 pounds *g* 1080 m= 178200
g mile pounds
Answer:
0.775
Explanation:
The weight of an object on a planet is equal to the gravitational force exerted by the planet on the object:

where
G is the gravitational constant
M is the mass of the planet
m is the mass of the object
R is the radius of the planet
For planet A, the weight of the object is

For planet B,

We also know that the weight of the object on the two planets is the same, so

So we can write

We also know that the mass of planet A is only sixty percent that of planet B, so

Substituting,

Now we can elimanate G, MB and m from the equation, and we get

So the ratio between the radii of the two planets is
