Answer:
P=740 KPa
Δ=7.4 mm
Explanation:
Given that
Diameter of plunger,d=30 mm
Diameter of sleeve ,D=32 mm
Length .L=50 mm
E= 5 MPa
n=0.45
As we know that
Lateral strain



We know that




So the axial pressure


P=740 KPa
The movement in the sleeve


Δ=7.4 mm
Answer:
The answer is: c. It does not move
Explanation:
Because the gravitational force is characterized by being an internal force within the Earth-particle system, in this case, the object of mass M. And since in this system there is no external force in the system, it can be concluded that the center of mass of the system will not move.
Answer:
24.3 degrees
Explanation:
A car traveling in circular motion at linear speed v = 12.8 m/s around a circle of radius r = 37 m is subjected to a centripetal acceleration:

Let α be the banked angle, as α > 0, the outward centripetal acceleration vector is split into 2 components, 1 parallel and the other perpendicular to the road. The one that is parallel has a magnitude of 4.43cosα and is the one that would make the car slip.
Similarly, gravitational acceleration g is split into 2 component, one parallel and the other perpendicular to the road surface. The one that is parallel has a magnitude of gsinα and is the one that keeps the car from slipping outward.
So 



Answer: 1 m/s
Explanation:
We have an object whose position
is given by a vector, where the components X and Y are identified by the unit vectors
and
(where each unit vector is defined to have a magnitude of exactly one):
![r=[2 m + (2 m/s) t] i + [3 m - (1 m/s^{2})t^{2}] j](https://tex.z-dn.net/?f=r%3D%5B2%20m%20%2B%20%282%20m%2Fs%29%20t%5D%20i%20%2B%20%5B3%20m%20-%20%281%20m%2Fs%5E%7B2%7D%29t%5E%7B2%7D%5D%20j)
On the other hand, velocity is defined as the variation of the position in time:

This means we have to derive
:
![\frac{dr}{dt}=\frac{d}{dt}[2 m + (2 m/s) t] i + \frac{d}{dt}[3 m - (1 m/s^{2})t^{2}] j](https://tex.z-dn.net/?f=%5Cfrac%7Bdr%7D%7Bdt%7D%3D%5Cfrac%7Bd%7D%7Bdt%7D%5B2%20m%20%2B%20%282%20m%2Fs%29%20t%5D%20i%20%2B%20%5Cfrac%7Bd%7D%7Bdt%7D%5B3%20m%20-%20%281%20m%2Fs%5E%7B2%7D%29t%5E%7B2%7D%5D%20j)
This is the velocity vector
And when
the velocity vector is:

This is the velocity vector at 2 seconds
However, the solution is not complete yet, we have to find the module of this velocity vector, which is the speed
:


Finally:
This is the speed of the object at 2 seconds