Density=mass/volume
5.45g/ml=65g/V
V=65g/5.42g/ml
V=11.92ml
Answer:
First Question

Second Question
The wavelength is for an X-ray
Explanation:
From the question we are told that
The width of the wall is 
The first excited state is
The ground state is 
Gnerally the energy (in MeV) of the photon emitted when the proton undergoes a transition is mathematically represented as
![E = \frac{h^2 }{ 8 * m * l^2 [ n_1^2 - n_0 ^2 ] }](https://tex.z-dn.net/?f=E%20%20%20%3D%20%20%20%5Cfrac%7Bh%5E2%20%7D%7B%208%20%2A%20m%20%20%2A%20%20l%5E2%20%5B%20n_1%5E2%20-%20n_0%20%5E2%20%5D%20%7D)
Here h is the Planck's constant with value 
m is the mass of proton with value 
So
![E = \frac{( 6.626*10^{-34})^2 }{ 8 * (1.67 *10^{-27}) * (10 *10^{-15})^2 [ 2^2 - 1 ^2 ] }](https://tex.z-dn.net/?f=E%20%20%3D%20%20%20%5Cfrac%7B%28%206.626%2A10%5E%7B-34%7D%29%5E2%20%7D%7B%208%20%2A%20%281.67%20%2A10%5E%7B-27%7D%29%20%20%2A%20%20%2810%20%2A10%5E%7B-15%7D%29%5E2%20%5B%202%5E2%20-%201%20%5E2%20%5D%20%7D)
=> 
Generally the energy of the photon emitted is also mathematically represented as

=> 
=> 
=> 
Generally the range of wavelength of X-ray is 
So this wavelength is for an X-ray.
Answer:
a) V = 1.866 10² V
, b) V = 3.424 10⁵ V
, c) v = 8.1 10⁶ m / s
Explanation:
a) the potential difference is requested to accelerate the electrons up to 2.7% of the speed of light
v = 0.027 c
v = 0.027 3 10⁸
v = 8.1 10⁶ m / s
for this part we can use the conservation of mechanical energy
starting point. When electrons are at rest
Em₀ = U = q V
final point. Electrons with maximum speed
Em_f = K = ½ m v2
Em₀ = Em_{f}
e V = ½ m v²
V = ½ m v² / e
let's calculate
V = ½ 9.1 10⁻³¹ (8.1 10⁶)² / 1.6 10⁻¹⁹
V = 1.866 10² V
V = 1866 V
b) if this acceleration protons is the mass of the proton is m_{p} = 1.67 10-27
V = ½ 1.67 10⁻²⁷ (8.1 10⁶)² / 1.6 10⁻¹⁹
V = 3.424 10⁵ V
V = 342402 V
c)
this potential difference should give the protons the same speed as the electrons
v = 8.1 10⁶ m / s
Answer:
Explanation:
3. Newton’s third law explains how every action has an equal but opposite reaction, meaning that forces comes in pairs. While the locomotive’s wheels are pushing back against the ground as the action force, the ground is producing a reaction force towards the locomotive, propelling it forward. Another pair of forces that act on the locomotive is gravity and normal force. While gravity is pulling the locomotive towards the ground, the normal force the ground exerts on the locomotive is why the locomotive doesn’t fall through the ground.
4. The force of Earth’s gravity on the Sun is weaker than the force of the Sun’s gravity on Earth. The Sun’s attraction affects the motion of Earth more than the Earth’s attraction affects the Sun’s motion because according to Newton’s second law, force has mass as one of its factors. The Sun has a significantly higher mass than Earth, meaning that its force of gravity would also be significantly higher. Newton’s third law is why the Earth doesn’t get marginally closer to the Sun, stating that every action has an equal and opposite reaction. As the Sun is pulling Earth towards itself, Earth is pulling away from the Sun.