Answer:
0.0367
Explanation:
The loss in kinetic energy results into work done by friction.
Since kinetic energy is given by
KE=0.5mv^{2}
Work done by friction is given as
W= umgd
Where m is the mass of suitacase, v is velocity of the suitcase, g is acceleration due to gravity, d is perpendicular distance where force is applied and u is coefficient of kinetic friction.
Making u the subject of the formula then we deduce that

Substituting v with 1.2 m/s, d with 2m and taking g as 9.81 m/s2 then

Therefore, the coefficient of kinetic friction is approximately 0.0367
Answer:
10.1 N
Explanation:
Your answer is 10.1 N, I don't actually know how to do it but I hope it helps.
Answer:
a = 5.05 x 10¹⁴ m/s²
Explanation:
Consider the motion along the horizontal direction
= velocity along the horizontal direction = 3.0 x 10⁶ m/s
t = time of travel
X = horizontal distance traveled = 11 cm = 0.11 m
Time of travel can be given as

inserting the values
t = 0.11/(3.0 x 10⁶)
t = 3.67 x 10⁻⁸ sec
Consider the motion along the vertical direction
Y = vertical distance traveled = 34 cm = 0.34 m
a = acceleration = ?
t = time of travel = 3.67 x 10⁻⁸ sec
= initial velocity along the vertical direction = 0 m/s
Using the kinematics equation
Y =
t + (0.5) a t²
0.34 = (0) (3.67 x 10⁻⁸) + (0.5) a (3.67 x 10⁻⁸)²
a = 5.05 x 10¹⁴ m/s²
The heat released by the water when it cools down by a temperature difference

is

where
m=432 g is the mass of the water

is the specific heat capacity of water

is the decrease of temperature of the water
Plugging the numbers into the equation, we find

and this is the amount of heat released by the water.