answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mademuasel [1]
2 years ago
14

The equilibrium fraction of lattice sites that are vacant in silver (Ag) at 600°C is 1 × 10-6. Calculate the number of vacancies

(per meter cubed) at 600°C. Assume a density of 10.35 g/cm3 for Ag, and note that AAg = 107.87 g/mol.
Physics
1 answer:
algol [13]2 years ago
6 0

Answer :

The number of vacancies (per meter cube) = 5.778 × 10^22/m^3.

Explanation:

Given,

Atomic mass of silver = 107.87 g/mol

Density of silver = 10.35 g/cm^3

Converting to g/m^3,

= 10.35 g/cm^3 × 10^6cm^3/m^3

= 10.35 × 10^6 g/m^3

Avogadro's number = 6.022 × 10^23 atoms/mol

Fraction of lattice sites that are vacant in silver = 1 × 10^-6

Nag = (Na * Da)/Aag

Where,

Nag = Total number of lattice sites in Ag

Na = Avogadro's number

Da = Density of silver

Aag = Atomic weight of silver

= (6.022 × 10^23 × (10.35 × 10^6)/107.87

= 5.778 × 10^28 atoms/m^3

The number of vacancies (per meter cube) = 5.778 × 10^28 × 1 × 10^-6

= 5.778 × 10^22/m^3.

You might be interested in
Compressional stress on rock can cause strong and deep earthquakes, usually at _____.
valentinak56 [21]
The answer is reverse faults. 
7 0
2 years ago
A pendulum is used in a large clock. The pendulum has a mass of 2kg. If the pendulum is moving at a speed of 2.9 m/s when it rea
Vanyuwa [196]
You first us 1/2(mv^2) to solve for the potential energy and then put that in to PE=m*g*h and solve for hight

3 0
2 years ago
Read 2 more answers
A uniform sphere with mass M and radius R is rotating with angular speed ω1 about a frictionless axle along a diameter of the sp
liq [111]

Answer:

W_2=\sqrt{\frac{3}{5} }W_1

Explanation:

For the first ball, the moment of inertia and the kinetic energy is:

I_1 =\frac{2}{5}MR^2

K_1 = \frac{1}{2}IW_1^2

So, replacing, we get that:

K_1 = \frac{1}{2}(\frac{2}{5}MR^2)W_1^2

At the same way, the moment of inertia and kinetic energy for second ball is:

I_2 =\frac{2}{3}MR^2

K_2 = \frac{1}{2}IW_2^2

So:

K_2 = \frac{1}{2}(\frac{2}{3}MR^2)W_2^2

Then, K_2 is equal to K_1, so:

K_2 = K_1

\frac{1}{2}(\frac{2}{3}MR^2)W_2^2 = \frac{1}{2}(\frac{2}{5}MR^2)W_1^2

\frac{1}{3}MR^2W_2^2 = \frac{1}{5}MR^2W_1^2

\frac{1}{3}W_2^2 = \frac{1}{5}W_1^2

Finally, solving for W_2, we get:

W_2=\sqrt{\frac{3}{5} }W_1

5 0
2 years ago
Seema knows the mass of basketball. What other information is needed to find the balls potential energy
Lelu [443]

Answer: The height (position) of the ball and the acceleration due gravity

Explanation:

In this case we are taking about gravitational potential energy, which is the energy a body or object possesses, due to its position in a gravitational field.  In this sense, this energy depends on the relative height of an object with respect to some point of reference and associated with the gravitational force.  

In the case of the Earth, in which the gravitational field is considered constant, the gravitational potential energy U will be:  

U=mgh  

Where:

m is the mass of the ball

g=9.8 m/s^{2} is the acceleration due gravity (assuming the ball is on the Earth surface)

h is the height (position) of the ball respect to a given point

Note the value of the gravitational potential energy is directly proportional to the height.

8 0
2 years ago
Read 2 more answers
Two objects are dropped from rest from the same height. Object A falls through a distance Da and during a time t, and object B f
stiv31 [10]

Answer:

Da=(1/4)Db

Explanation:

t = Time taken

u = Initial velocity

v = Final velocity

s = Displacement

a = Acceleration due to gravity = 9.81 m/s²

When s = Da, t = t

s=ut+\frac{1}{2}at^2\\\Rightarrow Da=0\times t+\frac{1}{2}\times a\times t^2\\\Rightarrow Da=\frac{1}{2}at^2

When s = Db, t = 2t

s=ut+\frac{1}{2}at^2\\\Rightarrow Da=0\times t+\frac{1}{2}\times a\times (2t)^2\\\Rightarrow Db=\frac{1}{2}a4t^2

Dividing the two equations

\frac{Da}{Db}=\frac{\frac{1}{2}at^2}{\frac{1}{2}a4t^2}=\frac{1}{4}\\\Rightarrow \frac{Da}{Db}=\frac{1}{4}\\\Rightarrow Da=\frac{1}{4}Db

Hence, Da=(1/4)Db

3 0
2 years ago
Other questions:
  • Complete combustion of 1.0 metric ton of coal (assuming pure carbon) to gaseous carbon dioxide releases 3.3 x 1010 j of heat. co
    10·1 answer
  • A container of nitrogen (an ideal diatomic gas, molecular weight=28) is at a pressure of 2 atm and has a mass density of 1.6 gra
    13·1 answer
  • This is a cell, which is the basic unit of all life. All organs in human bodies are made of cells and require oxygen to survive.
    5·1 answer
  • A force pair is produced when a tennis racket strikes a tennis ball. Which of the following best explains why the tennis ball do
    8·1 answer
  • The froghopper, Philaenus spumarius, holds the world record for insect jumps. When leaping at an angle of 58.0° above the horizo
    6·1 answer
  • Spacecraft have been sent to Mars in recent years. Mars is smaller than Earth and has correspondingly weaker surface gravity. On
    7·1 answer
  • There are lots of examples of ideal gases in the universe, and they exist in many different conditions. In this problem we will
    8·1 answer
  • A lion and a pig participate in a race over a 2.20 km long course. The lion travels at a speed of 18.0 m/s and the pig can do 2.
    15·1 answer
  • Calculate the length of a simple pendulum that oscillates with a frequency of 0.4Hz g=10m/s2 , ^=3.142
    12·1 answer
  • Calculate the work WC done by the gas during the isothermal expansion. Express WC in terms of p0, V0, and Rv.
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!