answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
AVprozaik [17]
1 year ago
8

There are lots of examples of ideal gases in the universe, and they exist in many different conditions. In this problem we will

examine what the temperature of these various phenomena are. Give an expression for the temperature of an ideal gas in terms of pressure P, particle density per unit volume rho and fundamental constants.
Physics
1 answer:
elena-14-01-66 [18.8K]1 year ago
5 0

Answer:

P = ρRT/M

Explanation:

Ideal gas equation is given as follows generally:

PV = nRT (1)

P = pressure in the containing vessel

V = volume of the containing vessel

n = number of moles

R = gas constant

T = temperature in K

n = m/M

m = mass of the gas contained in the vessel in g

M = molar mass in g/mol

ρ = m/V

Density of the gas = ρ

Substituting for n in (1)

PV = mRT/M. (2)

Dividing equation (2) through by V

P = m/V ×RT/M

P = ρRT/M

You might be interested in
Air at 3 104 kg/s and 27 C enters a rectangular duct that is 1m long and 4mm 16 mm on a side. A uniform heat flux of 600 W/m2 is
ad-work [718]

Answer:

T_{out}=27.0000077 ºC

Explanation:

First, let's write the energy balance over the duct:

H_{out}=H_{in}+Q

It says that the energy that goes out from the duct (which is in enthalpy of the mass flow) must be equals to the energy that enters in the same way plus the heat that is added to the air. Decompose the enthalpies to the mass flow and specific enthalpies:

m*h_{out}=m*h_{in}+Q\\m*(h_{out}-h_{in})=Q

The enthalpy change can be calculated as Cp multiplied by the difference of temperature because it is supposed that the pressure drop is not significant.

m*Cp(T_{out}-T_{in})=Q

So, let's isolate T_{out}:

T_{out}-T_{in}=\frac{Q}{m*Cp}\\T_{out}=T_{in}+\frac{Q}{m*Cp}

The Cp of the air at 27ºC is 1007\frac{J}{kgK} (Taken from Keenan, Chao, Keyes, “Gas Tables”, Wiley, 1985.); and the only two unknown are T_{out} and Q.

Q can be found knowing that the heat flux is 600W/m2, which is a rate of heat to transfer area; so if we know the transfer area, we could know the heat added.

The heat transfer area is the inner surface area of the duct, which can be found as the perimeter of the cross section multiplied by the length of the duct:

Perimeter:

P=2*H+2*A=2*0.004m+2*0.016m=0.04m

Surface area:

A=P*L=0.04m*1m=0.04m^2

Then, the heat Q is:

600\frac{W}{m^2} *0.04m^2=24W

Finally, find the exit temperature:

T_{out}=T_{in}+\frac{Q}{m*Cp}\\T_{out}=27+\frac{24W}{3104\frac{kg}{s} *1007\frac{J}{kgK} }\\T_{out}=27.0000077

T_{out}=27.0000077 ºC

The temperature change so little because:

  • The mass flow is so big compared to the heat flux.
  • The transfer area is so little, a bigger length would be required.
3 0
1 year ago
A 26 cm object is 18 cm in front of a plane mirror. A ray of light strikes the object and is reflected off the mirror at a 42-de
matrenka [14]

Answer:

42 degrees, virtual image, same size as the object (26 cm)

Explanation:

The law of reflection states that:

- When a ray of light is incident on a flat surface (such as the plane mirror), the angle of reflection is equal to the angle of incidence

So, since in this case the angle of incidence is 42 degrees, the angle of reflection is also 42 degrees.

Moreover, the image formed by a plane mirror is always:

- Virtual (on the same side as the object)

- The same size as the object

So in this case, since the object's size is 26 cm, the image's size is also 26 cm.

8 0
2 years ago
A particle moving in the x direction is being acted upon by a net force F(x)=Cx2, for some constant C. The particle moves from x
elixir [45]

Answer:

Change in kinetic energy is ( 26CL³)/3

Explanation:

Given :

Net force applied, F(x) = Cx²  ....(1)

Displacement of the particle from xi = L to xf = 3L.

The work-energy theorem states that change in kinetic energy of the particle is equal to the net amount of work is done to displace the particle.

That is,

ΔK = W = ∫F·dx

Substitute equation (1) in the above equation.

ΔK =  ∫Cx²dx

The limit of integration from xi = L to xf = 3L, so

\Delta K=\frac{C}{3}(x_{f} ^{3} - x_{i} ^{3})

Substitute the values of xi and xf in the above equation.

\Delta K=\frac{C}{3}((3L) ^{3} - L ^{3})

\Delta K=\frac{C}{3}\times26L^{3}

5 0
2 years ago
A common small-molecular weight (and therefore fast diffusing for an organic molecule) ingredient in perfumes is vanillin, the p
natima [27]
What's the answer shshshsbshsbsbs sbo
7 0
1 year ago
Read 2 more answers
1) A fan is to accelerate quiescent air to a velocity of 8 m/s at a rate of 9 m3/s. Determine the minimum power that must be sup
azamat

Answer:

\dot{W} = 339.84 W

Explanation:

given data:

flow Q = 9 m^{3}/s

velocity = 8 m/s

density of air = 1.18 kg/m^{3}

minimum power required to supplied to the fan is equal to the POWER POTENTIAL of the kinetic energy and it is given as

\dot{W} =\dot{m}\frac{V^{2}}{2}

here \dot{m}is mass flow rate and given as

\dot{m} = \rho*Q

\dot{W} =\rho*Q\frac{V^{2}}{2}

Putting all value to get minimum power

\dot{W} =1.18*9*\frac{8^{2}}{2}

\dot{W} = 339.84 W

7 0
1 year ago
Other questions:
  • If the volume of an object is reported as 5.0 ft3 what is the volume in cubic meters
    15·1 answer
  • How long does it take for the velocity of the rain drop to reach 99% of its terminal velocity? (assume the conditions from part
    6·1 answer
  • A large container, 120 cm deep is filled with water. If a small hole is punched in its side 77.0 cm from the top, at what initia
    11·1 answer
  • A civil engineer wishes to redesign the curved roadway in the example What is the Maximum Speed of the Car? in such a way that a
    6·1 answer
  • Little Tammy lines up to tackle Jackson to (unsuccessfully) prove the law of conservation of momentum. Tammy’s mass is 34.0 kg a
    13·1 answer
  • An aluminum "12 gauge" wire has a diameter d of 0.205 centimeters. The resistivity ρ of aluminum is 2.75×10−8 ohm-meters. The el
    13·1 answer
  • Three flat layers of transparent material are stacked upon one another. The top layer has index of refraction n1, the middle has
    8·1 answer
  • Consider as a system the gas in a vertical cylinder; the cylinder is fitted with a piston on which a number of small weights are
    14·1 answer
  • Which illustration represents the arrangement of particles in a gas?
    6·1 answer
  • Which statement accurately describes the motion of the object in the graph above over 10 seconds? Group of answer choices The ob
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!