answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
katovenus [111]
2 years ago
5

A common small-molecular weight (and therefore fast diffusing for an organic molecule) ingredient in perfumes is vanillin, the p

rimary component of vanilla bean extract (molecular weight = 152). the d for vanillin in air is 0.114 cm2/s. if i open a bottle of vanilla on the other side of the room 3 meters away, and the air is still so there is no convection, about how long would i have to wait before i could expect to smell the vanilla?
Physics
2 answers:
natima [27]2 years ago
7 0
What's the answer shshshsbshsbsbs sbo
mote1985 [20]2 years ago
4 0

Answer:

2.54 seconds

Explanation:

Gathering the data:

let molecular weight = 152 g/mol

diffusion coefficient = 0.114 cm²/s

Distance = 3 meters

The most important thing to know is Fick's Law of diffusion. The law states that the flux is directly proportional to the concentration gradient. In other words

where dc = change in concentration

            D = diffusion coefficient

            Dx = change in the distance, cm

solving:

j = dc/3 (-0.114)

 this gives t = 2.54 seconds

You might be interested in
A carnival game consists of a two masses on a curved frictionless track, as pictured below. The player pushes the larger object
Harman [31]

Answer:

v₁₀ = 1.90 m / s

Explanation:

In this exercise we are given the maximum height data, with energy we can know how fast the body came out

Final mechanical energy, maximum height

    Em_{f} = U = m g h

Initial mechanical energy, in the lower part of the track

    Em₀ = K = ½ m v²

    Em=   Em_{f}

    ½ m v² = m g h

    v = √ 2gh

Now we can use the moment to find the speed with which objects collide

The large object has a mass M = 5.41 kg a velocity starts v₁₀, the small object has a mass m = 1.68 kg an initial velocity of zero v₂₀ = 0 and  final velocity v

Initial before the crash

    p₀ = M v₁₀ + 0

Final after the crash

      p_{f} = M v1f + m v

   p₀ =   p_{f}

   M v₁₀ = M v_{1f}+ m v

As the shock is elastic the kinetic energy is conserved

     K₀ = K_{f}

    ½ M v₁₀² = ½ M v_{1f}² + ½ m v²

Let's write the system of equations

    M v₁₀ = M  v_{1f} + m v

    M v1₁₀² = M v_{1f}² + m v²

We cleared v1f in the first we replaced in the second

   v_{1f} = (M v₁₀ - mv) / M

    M v₁₀² = M (M v₁₀ - mv)² / M² + m v²

    M v₁₀² = 1 / M (M² v₁₀² - 2mM v v₁₀ + m² v²) +m v²

     v₁₀² (M - M) + 2 m v v₁₀ - v² (m2 + m) / M = 0

     2 m v₁₀ - v (m + 1) m/ M = 0

     v₁₀ = v (m +1) / (2M)

Let's substitute the value of v

     v1₁₀= √ (2gh) (m +1) / (2M)

Let's calculate

    v₁₀ = √ (2 9.8 3) (1+ 1.68) / (2  5.41)

    V₁₀ = 7.668 (2.68) / 10.82

   v₁₀ = 1.90 m / s

5 0
2 years ago
A 4.00 kg rock is rolling 10.0 m/s find its kinetic energy
Olin [163]
KE = 1/2mv^2

1/2 of the mass in this equation is 2 bc 4 divides by 2 = 2.

The velocity squared in this equation is 100 because 10 * 10 = 100

2 * 100 = 200

The kinetic energy of the rock is 200 joules.

Hope this helps.

3 0
2 years ago
Like all planets, the planet Venus orbits the Sun in periodic motion and simultaneously spins about its axis. Just as on Earth,
Liono4ka [1.6K]

Answer:

a) F = 5.14 10⁻⁸ Hz,  f = 4.76 10-8 Hz,  b)   v = 2.29 m / s,   f = 42.5 Hz

Explanation:

a)This problem has two parts.

For the calculations relative to the planet Venus, we use that the period and the frequency are related

            f = 1 / T

frequency of the orbit around the Sun

   

Let's reduce the period to the SI system

           T = 225 days (24h / 1days) (3600 s / 1h) = 1.94 10⁷ s

           F = 1 / 1.94 10⁷

           F = 5.14 10⁻⁸ Hz

rotation frequency

            T = 243 d = 2.1 107 s

             f = 1 / T

             f = 1 / 2.1 107

            f = 4.76 10-8 Hz

b) give the data of some marine waves

the speed of the wave can be found with kinematics

            v = x / t

            v = 50.0 / 21.8

            v = 2.29 m / s

If the wavelength is L = 9.28m

this distance is the distance between two consecutive ridges or valleys

             λ / 2 = L

             λ = 2L

             λ = 2 9.28

             λ = 18.56 m

the speed of the wave is

             v = λ f

             f = v /λ

             f = 2.29 / 18.56

             f = 42.5 Hz

7 0
1 year ago
Calculate the change in internal energy (δe) for a system that is giving off 25.0 kj of heat and is changing from 12.00 l to 6.0
lora16 [44]

Since the system itself is giving off heat, this is a reduction in the internal energy.

heat = - 25,000 J

 

Since work is being done on the system, therefore it is an additional energy to the system. Work is given as:

work = - P dV

work = - 1.50 atm (6 L – 12 L)

work = 9 L atm

Since it is given that 1 L atm is equivalent to 101.3 J, therefore the total energy added is:

energy due to work = 9 L atm (101.3 J / 1 L atm)

energy due to work = 911.7 J

 

Therefore the total change in internal energy is the sum of heat and energy due to work:

Change in internal energy = - 25,000 J + 911.7 J

Change in internal energy = - 24,088.3 J

 

<span>Therefore, approximately 24.1 kJ of energy is lost by the system in the total process.</span>

<span>
</span>

<span>Answer:</span>

<span>-24.1 kJ</span>

8 0
1 year ago
Read 2 more answers
A "biconvex" lens is one in which both surfaces of the lens bulge outwards. Suppose you had a biconvex lens with radii of curvat
Stolb23 [73]

Answer: f=150cm in water and f=60cm in air.

Explanation: Focal length is a measurement of how strong light is converged or diverged by a system. To find the variable, it can be used the formula:

\frac{1}{f} = (nglass - ni)(\frac{1}{R1} - \frac{1}{R2}).

nglass is the index of refraction of the glass;

ni is the index of refraction of the medium you want, water in this case;

R1 is the curvature through which light enters the lens;

R2 is the curvature of the surface which it exits the lens;

Substituting and calculating for water (nwater = 1.3):

\frac{1}{f} = (1.5 - 1.3)(\frac{1}{10} - \frac{1}{15})

\frac{1}{f} = 0.2(\frac{1}{30})

f = \frac{30}{0.2} = 150

For air (nair = 1):

\frac{1}{f} = (1.5 - 1)(\frac{1}{10} - \frac{1}{15})

f = \frac{30}{0.5} = 60

In water, the focal length of the lens is f = 150cm.

In air, f = 60cm.

5 0
2 years ago
Read 2 more answers
Other questions:
  • If you know that the period of a pendulum is 1.87 seconds, what is the length of that pendulum? (Assume that we are on Earth and
    6·2 answers
  • What’s the force of a pitching machine on a baseball?
    5·2 answers
  • As a moon follows its orbit around a planet, the maximum grav- itational force exerted on the moon by the planet exceeds the min
    9·1 answer
  • A neutron star has a mass of 2.0 × 1030 kg (about the mass of our sun) and a radius of 5.0 × 103 m (about the height of a good-s
    14·2 answers
  • A car drives around a horizontal, circular track at constant speed. Consider the following three forces that act on the car: (1)
    12·1 answer
  • A piece of copper of mass 100 g is being drilled through with a 1/2" electric drill. The drill operates at 40.0 W and takes 30.0
    15·1 answer
  • A 10 kg migratory swan cruises at 20 m/s. A calculation that takes into ac- count the necessary forces shows that this motion re
    9·1 answer
  • Write a hypothesis about the effect of the angle of the track on the acceleration of the cart. Use the "if . . . then . . . beca
    7·1 answer
  • Two strings are respectively 1.00 m and 2.00 m long. Which of the following wavelengths, in meters, could represent harmonics pr
    11·1 answer
  • A wave has a frequency of 46 Hz and a wavelength of 1.7 meters. What is the wave speed wave?
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!