with the same generator, so the only factor for producing
the slectric field is only the speed. The faster the rotational speed of the
generator the greater it produce electric field. So the sequence is 3000 rpm
< 3200 rpm < 3400 rpm < 3600 rpm
3 kilometers, it is just 5/60 or 1/12 multiplied by 36.
Answer:
Part A - 3N/m
Part B - see attachment
Part C - 4.9 × 10-³J
Part D - E = 1/2kd² + 1/2mv² + mgh
Explanation:
This problem requires the knowledge of simple harmonic motion for cimplete solution. To find the spring constant in part A the expression relating the force applied to a spring and the resulting stretching of the spring (hooke's law) is required which is F = kx.
The free body diagram can be found in the attachment. Fp(force of pull), Ft(Force of tension) and W(weight).
The energy stored in the pring as a result of the stretching of d = 5.7cm is 1/2kd².
Part D
Three forces act on the spring-monkey system and they do work in different forms: kinetic energy 1/2mv² , elastic potential
energy due to the restoring force in the spring or the tension force 1/2kd², and the gravitational potential energy mgh of the position of the system. So the total energy of the system E = 1/2kd² + 1/2mv² + mgh.
Answer:
The separation between the first two minima on either side is 0.63 degrees.
Explanation:
A diffraction experiment consists on passing monochromatic light trough a small single slit, at some distance a light diffraction pattern is projected on a screen. The diffraction pattern consists on intercalated dark and bright fringes that are symmetric respect the center of the screen, the angular positions of the dark fringes θn can be find using the equation:
with a the width of the slit, n the number of the minimum and λ the wavelength of the incident light. We should find the position of the n=1 and n=2 minima above the central maximum because symmetry the angular positions of n=-1 and n=-2 that are the angular position of the minima below the central maximum, then:
for the first minimum
solving for θ1:


for the second minimum:



So, the angular separation between them is the rest:


Incomplete question.The complete question is here
Determine the torque applied to the shaft of a car that transmits 225 hp and rotates at a rate of 3000 rpm.
Answer:
Torque=0.51 Btu
Explanation:
Given Data
Power=225 hp
Revolutions =3000 rpm
To find
T( torque )=?
Solution
As

As force moves an object through a distance, work is done on the object. Likewise, when a torque rotates an object through an angle, work is done.
So
