Answer:
T = 273 + (-50) = 273 – 50 = 223 K
R = 188.82 J / kg K for CO2
Density (Martian Atmosphere) = P / RT = 900 / 188.92 x 223 = 900 / 42129.16 = 0.0213 kg / 
T = 273 +18 = 291 K, R = 287 J / kg k (for air) P = 101.6 k Pa = 101600 Pa
Density (Earth Atmosphere) = P / RT = 101600 / 287 x 291 = 1.216 kg /
As we know that reaction time will be

so the distance moved by car in reaction time



now the distance remain after that from intersection point is given by

So our distance from the intersection will be 100 m when we apply brakes
now this distance should be covered till the car will stop
so here we will have


now from kinematics equation we will have



so the acceleration required by brakes is -2 m/s/s
Now total time taken to stop the car after applying brakes will be given as



total time to stop the car is given as

Answer:
Amplitude, A = 0.049 meters
Explanation:
Given that,
A harmonic wave travels in the positive x direction at 6 m/s along a taught string. A fixed point on the string oscillates as a function of time according to the equation :
.......(1)
The general equation of a wave is given by :
.......(2)
A is amplitude of wave
On comparing equation (1) and (2) we get :
A = 0.049 meters
So, the amplitude of the wave is 0.049 meters.