answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
xz_007 [3.2K]
1 year ago
5

platform diving in the olympic games takes place at two heights: 5 meters and 10 meters. What is the velocity of a diver enterin

g the water from each platform if he steps off the platform initially? How much time does it take the diver to reach the water from each platform?
Physics
1 answer:
AveGali [126]1 year ago
7 0

(a) Time of flight: 1.01 s and 1.43 s

The motion of a diver jumping from a platform and entering the water is a free-fall motion, so its vertical displacement is given by

s=ut+\frac{1}{2}gt^2

where

u = 0 is the initial velocity

t is the time

g=9.8 m/s^2 is the acceleration of gravity (taking downward as positive direction)

If we re-arrange the equation, we can solve for t, the time it takes for each diver to enter the water:

t=\sqrt{\frac{2s}{g}}

For the diver jumping from 5 m, s = 5 m, so we get

t=\sqrt{\frac{2(5)}{9.8}}=1.01 s

For the diver jumping from 10 m, s = 10 m, so we get

t=\sqrt{\frac{2(10)}{9.8}}=1.43 s

(b) final velocity: 9.9 m/s and  14.0 m/s

In order to find the final velocity of each diver as they enter the water, we can now use the following suvat equation:

v=u+gt

where

v is the final velocity

u = 0 is the initial velocity

g=9.8 m/s^2 is the acceleration of gravity

t is the time at which the diver enters the water

For the diver jumping from 5 m, t = 1.01 s, so the final velocity is

v=0+(9.8)(1.01)=9.9 m/s

For the diver jumping from 10 m, t = 1.43 s, so the final velocity is

v=0+(9.8)(1.43)=14.0 m/s

You might be interested in
Calculate the mass of the air contained in a room that measures 2.50 m x 5.50 m x 3.00 m if the density of air is 1.29 g/dm3.53.
Law Incorporation [45]

Answer:

5.32\cdot 10^4 g

Explanation:

First of all, we need to find the volume of the room, which is given by

V=2.50 m \cdot 5.50 m \cdot 3.00 m =41.3 m^3

Now we  can find the mass of the air by using

m=dV

where

d=1.29 g/dm^3 is the density of the air

V=41.3 m^3 = 41,300 dm^3 is the volume of the room

Substituting,

m=(1.29)(41300)=5.32\cdot 10^4 g

6 0
2 years ago
Each metal is illuminated with 400 nm (3.10 eV) light. Rank the metals on the basis of the maximum kinetic energy of the emitted
34kurt

Answer:

K.E(K) > K.E(Cs) > 0 (others)

Explanation:

Given the Work functions of the metal as

Aluminium (Wo)=4eV

Platinum(Wo) =6.4eV

Cesium (Wo) =2.1eV

Beryllium (Wo) = 5.0eV

Magnesium (Wo) = 3.7eV

Potassium (Wo) = 2.3eV

Using the formula:

K.E = hf - Wo........(1)

Wo = hfo..............(2)

From these the fo can be calculated for all the metals

Where K.E =Kinetic Energy

hf = energy of illumination = 3.10eV

h is Planck constant and has the value 6.6 × 10^-34JS^-1

The frequency f of the illumination is given by

f = 3.10 × 1.6 × 10^-19/6.6 × 10^-34

f = 7.51 × 10¹⁴ Hz..........(*)

Now an electron is only ejected if the threshold frequency of the metal is reached.

The work function has a threshold frequency (fo) for all the metals and this minimum frequency required to required to remove an electron from the surface of a metal.

We need to compare f with fo

If fo >= f there is emission, otherwise there is no emission

So using (2) we calculate for all fo and compare with f

K.E(Al) = 3.10 - 4.0 - 3.10 = -0.9eV, fo = 9.70 × 10¹⁴ Hz (no emission)

K.E(Pt) = 3.10 - 6.40 = -3.30eV, fo = 1.55 × 10^15 Hz, ( no emission)

K.E(Cs) = 3.10 - 2.10 = -1.0eV, fo = 5.09×10¹⁴ Hz, (emission)

K.E(Be) =3.10-5.0 = -1.90eV, fo = 12.12 ×10^15 Hz.,(no emission)

K.E(Mg) = 3.10-3.70 = -0.6eV, fo = 8.97 × 10¹⁴Hz, (no emission)

K.E(K) = 3.10 - 2.30= 0.9eV, fo = 5.58 × 10¹⁴ Hz, (emission)

So the metals whose electron gain Kinetic energy are:

Cesium

Potassium

Others have zero kinetic energy since no electron is emitted.

Hence the rank is:

K.E(K) > K.E(Cs) > 0 (others)

6 0
2 years ago
An electric clock is hanging on a wall. As you are watching the second hand rotate, the clock's battery stops functioning, and t
Setler [38]

Answer:

B. W is positive and a is negative

Explanation:

As we know that the angular speed of the second clock is in positive direction so as it comes to halt from its initial direction of motion then we have

initial angular velocity is termed as positive angular velocity

\omega = positive

now it comes to stop so angular acceleration is taken in opposite to the direction of angular speed

so we will have

\alpha = negative

so here correct answer is

B. W is positive and a is negative

8 0
1 year ago
A cylindrical rod of copper (E = 110 GPa, 16 × 106 psi) having a yield strength of 240 MPa (35,000 psi) is to be subjected to a
Fynjy0 [20]

Answer:

d= 7.32 mm

Explanation:

Given that

E= 110 GPa

σ = 240 MPa

P= 6640 N

L= 370 mm

ΔL = 0.53

Area A= πr²

We know that  elongation due to load given as

\Delta L=\dfrac{PL}{AE}

A=\dfrac{PL}{\Delta LE}

A=\dfrac{6640\times 370}{0.53\times 110\times 10^3}

A= 42.14 mm²

πr² = 42.14 mm²

r=3.66 mm

diameter ,d= 2r

d= 7.32 mm

4 0
1 year ago
Read 2 more answers
You run due east at a constant speed of 3.00 m/s for a distance of 120.0 m and then continue running east at a constant speed of
Leni [432]

Answer:

Explanation:

Given

Speed while running towards east is v_1=3\ m/s

Distance traveled in east direction x_1=120\ m

For Another interval you  run with velocity

v_2=5\ m/s

x_2=240\ m

Total displacement=x_1+x_2

=120+120=240\ m

Time for first interval

t_1=\frac{x_1}{v_1}=\frac{120}{3}

t_1=\frac{120}{3}=40\ s

Time for second interval

t_2=\frac{x_2}{v_2}=\frac{120}{5}=24\ s

total time t=t_1+t_2

t=40+24=64\ s

average velocity v_{avg}=\frac{x_1+x_2}{t}

v_{avg}=\frac{240}{64}=3.75\ m/s

Therefore average velocity is less than 4 m/s  

7 0
2 years ago
Other questions:
  • One beam of electrons moves at right angles to a magnetic field. the force on these electrons is 4.9 x 10-14 newtons. a second b
    13·1 answer
  • A CCD has a greatest possible pixel value of 4095. what is the bit level of this CCD?
    5·1 answer
  • Equal force is applied to a baseball, a basketball, a tennis ball, and a bowling ball. Which ball will have the GREATEST acceler
    11·1 answer
  • At a location where the acceleration due to gravity is 9.807 m/s2, the atmospheric pressure is 9.891 × 104 Pa. A barometer at th
    5·2 answers
  • Consider the waveform expression. y (x, t) = ym sin (0.333x + 5.36 + 585t) The transverse displacement (y) of a wave is given as
    7·1 answer
  • A flying mosquito hits the windshield of a moving car and gets smashed, but the car is intact. Which of the following statements
    14·1 answer
  • A 6.0-cm-diameter, 11-cm-long cylinder contains 100 mg of oxygen (O2) at a pressure less than 1 atm. The cap on one end of the c
    11·1 answer
  • Consider an opaque horizontal plate that is well insulated on its back side. The irradiation on the plate is 2500 W/m2, of which
    14·1 answer
  • A current of 0.001 A can be felt by the human body. 0.005 A can produce a pain response. 0.015 A can cause a loss of muscle cont
    9·1 answer
  • The energy from 0.015 moles of octane was used to heat 250 grams of water. The temperature of the water rose from 293.0 K to 371
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!