We need the power law for the change in potential energy (due to the Coulomb force) in bringing a charge q from infinity to distance r from charge Q. We are only interested in the ratio U₁/U₂, so I'm not going to bother with constants (like the permittivity of space).
<span>The potential energy of charge q is proportional to </span>
<span>∫[s=r to ∞] qQs⁻²ds = -qQs⁻¹|[s=r to ∞] = qQr⁻¹, </span>
<span>so if r₂ = 3r₁ and q₂ = q₁/4, then </span>
<span>U₁/U₂ = q₁Qr₂/(r₁q₂Q) = (q₁/q₂)(r₂/r₁) </span>
<span>= 4•3 = 12.</span>
<span>When a person lifts the block, the block has more potential energy. Therefore the person does positive work on the block.
work = m g h
work = (4.5 kg) (9.80 m/s^2) (1.2 m)
work = 52.92 joules
The person's work on the block is 52.92 joules
When the block is being raised, the force of gravity opposes the motion. Therefore the force of gravity does negative work on the block.
work = - (force) (h)
work = - m g h
work = -(4.5 kg) (9.80 m/s^2) (1.2 m)
work = -52.92 joules
The work done by the force of gravity on the block is -52.92 joules
Note that when the block is moved horizontally, the potential energy does not change. Therefore there is no work done on the block when it moves horizontally (we are assuming that the kinetic energy does not change).</span>
Answer:

Explanation:
If the stone will reach the top position of flag pole at t = 0.5 s and t = 4.1 s
so here the total time of the motion above the top point of pole is given as

now we have



so this is the speed at the top of flag pole
now we have



now the height of flag pole is given as



He used the quantum mechanic theory to approach light by describing relativity and perspective.