Answer:
the direction of acceleration of the vehicle is the same direction of its velocity of car
s acceleration has the opposite direction to the car speed.
Explanation:
The initial acceleration of the car can be calculated with
v = v₀ + a t
a = (v-v₀) t
indicate that the initial velocity is zero (v₀ = 0 m / s)
a = v / t
a = 300 / t
the direction of acceleration of the vehicle is the same direction of its acceleration movement.
When the car collides with the wall, it exerts a force in the opposite direction that stops the vehicle, therefore this acceleration has the opposite direction to the car speed. But your module must be much larger since the distance traveled to stop is small
Answer: 10 and 35 degrees
Explanation: Localizers width below 10 degree and 35 degree signal arc is unreliable and considered unusable for navigation and as a result, aircrafts may loose alignment
Answer:
The cannonball fly horizontally before it strikes the ground, S = 323.25 m
Explanation:
Given data,
The height of the cliff, h = 80 m
The horizontal velocity of the cannonball, Vₓ = 80 m/s
The range of the cannon ball with initial vertical velocity is zero is given by the formula,


S = 323.25 m
Hence, the cannonball fly horizontally before it strikes the ground, S = 323.25 m
that would be given by
[email protected]
@ representing coefficient of kinetic friction.
thus 19.5/51.7 = 0.377
<em>To determine the y component of velocity of a projectile </em><u><em>sine </em></u><em>operation is performed on the angle of launch.</em>
<u>Answer:</u> <em>sine</em>
<u>Explanation:</u>
Thus 
The initial velocity u can be resolved along two directions.
Along the X direction initial velocity = u cos θ
Along y direction initial velocity= u sin θ
From the equation of motion 
Thus velocity along x direction
=u cos θ
Velocity along y direction
= u sinθ -gt
Sign of g is negative.