Given:
u = 0, initial velocity
s 0.9 m, distance traveled.
t = 3 s, the time taken.
Let a = the acceleration. Then
s = ut + (1/2)*a*t²
(0.9 m) = 0.5*(a m/s²)*(3 s)²
0.9 = 4.5a
a = 0.2 m/s²
Answer: 0.2 m/s²
Answer:
Option (c) will be correct answer that is it will go 1.6 m
Explanation:
We have given that conveyor has the velocity u = 3.1 m/sec
Mass of the robot = 10 kg
static friction coefficient = 0.5 and kinetic friction coefficient = 0.3
Acceleration due to gravity g = 9.8 
Acceleration a = kinetic friction coefficient ×g = 0.3×9.8 = 2.94
Now according to third equation of motion

Finally velocity of the conveyor will be zero
So 
s = 1.6 m
So option (c) is correct option
Answer: The direction of the electric field, E→, is pointed in the +y direction.
Explanation:
One can use the right hand rule to illustrate the direction of travel of an electromagnetic and thereby get the directions of the electric field, magnetic field and direction of travel of the wave.
The right hand rule states that the direction of the thumb indicate the direction of travel of the electromagnetic wave (<em>in this case the -z direction</em>) and the curling of the fingers point in the direction of the magnetic field B→ (<em>in this case the +x direction</em>), therefore, the electric field direction E→ is in the direction of the fingers which would be pointed towards the +y direction.