answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tigry1 [53]
2 years ago
6

A girl weighing 45kg is standing on the floor, exerting a downward force of 200N on the floor. The force exerted on her by the f

loor is ..............
Select one:

a.
No force exerted


b.
Less than 2000N


c.
Equal to 200 N


d.
Greater than 200 N​
Physics
1 answer:
sukhopar [10]2 years ago
7 0

Answer:

c.

Equal to 200 N..........

You might be interested in
The first and second coils have the same length, and the third and fourth coils have the same length. They differ only in the cr
stealth61 [152]

Answer:

\frac{R_2}{R_1}=\frac{A_1}{A_2}\\\frac{R_4}{R_3}=\frac{A_3}{A_4}

Explanation:

The resistance of a conductor is directly proportional to its length and is inversely proportional to its cross-sectional area, this dependence is given by:

R=\frac{\rho L}{A}

\rho is the material's resistance, L is the legth and A is the cross-sectional area.

For the first and second coils, we have:

R_1=\frac{\rho L}{A_1}\\R_2=\frac{\rho L}{A_2}\\\rho L=R_1A_1\\\rho L=R_2A_2\\R_1A_1=R_2A_2\\\frac{R_2}{R_1}=\frac{A_1}{A_2}

For the third and fourth coils, we have:

R_3=\frac{\rho L'}{A_3}\\R_4=\frac{\rho L'}{A_4}\\\rho L'=R_3A_3\\\rho L'=R_4A_4\\R_3A_3=R_4A_4\\\frac{R_4}{R_3}=\frac{A_3}{A_4}

6 0
2 years ago
You and your friend Peter are putting new shingles on a roof pitched at 20degrees . You're sitting on the very top of the roof w
Anit [1.1K]

Answer:

v₀ =3.8 m/s

Explanation:

Newton's second law of the box:

∑F = m*a Formula (1)

∑F : algebraic sum of the forces in Newton (N)

m : mass in kilograms (kg)

a : acceleration in meters over second square (m/s²)

Known data

m=2.1 kg  mass of the box

d= 5.4m  length of the roof

θ = 20° angle θ of the roof with respect to the horizontal direction

μk= 0.51 : coefficient of kinetic friction between the box and the roof  

g = 9.8 m/s² : acceleration due to gravity

Forces acting on the box

We define the x-axis in the direction parallel to the movement of the box on the roof  and the y-axis in the direction perpendicular to it.

W: Weight of the box  : In vertical direction

N : Normal force : perpendicular to the direction the  roof

fk : Friction force: parallel to the direction to the roof

Calculated of the weight  of the box

W= m*g  =  (2.1 kg)*(9.8 m/s²)= 20.58 N

x-y weight components

Wx= Wsin θ= (20.58)*sin(20)° =7.039 N

Wy= Wcos θ =(20.58)*cos(20)°= 19.34 N

Calculated of the Normal force

∑Fy = m*ay    ay = 0

N-Wy= 0

N=Wy =19.34 N

Calculated of the Friction force:

fk=μk*N= 0.51* 19.34 N = 9.86 N

We apply the formula (1) to calculated acceleration of the block:

∑Fx = m*ax  ,  ax= a  : acceleration of the block

Wx-f = ( 2.1)*a

7.039 - 9.86  = ( 2.1)*a

-2.821 = ( 2.1)*a

a=(-2.821) /( 2.1)

a= -1.34  m/s²

Kinematics of the box

Because the box moves with uniformly accelerated movement we apply the following formula to calculate the final speed of the block :

vf²=v₀²+2*a*d Formula (2)

Where:  

d:displacement  = 5.4 m

v₀: initial speed  

vf: final speed  = 0

a : acceleration of the box = -1.34  m/s²

We replace data in the formula (2)

0²=v₀²+2*(-1.34)*(5.4)

2*(1.34)*(5.4)= v₀²

v_{o} =\sqrt{14.472}

v₀ = 3.8 m/s

7 0
2 years ago
Timmy drove 2/5 of a journey at an average speed of 20 mph.
mixer [17]

Answer:

4hr

Explanation:

5 0
2 years ago
Read 2 more answers
Calculate a pendulum's frequency of oscillation (in Hz) if the pendulum completes one cycle in 0.5 s.
Marina86 [1]
Time taken to complete one oscillation for a pendulum is Time Period, T = 0.5 s 
Frequency of the pendulum oscillation = 1 / Time Period => f = 1 / T = 1 / 0.5  
Frequency f = 2 Hz
3 0
2 years ago
Use the formula h = −16t2 + v0t. (if an answer does not exist, enter dne.) a ball is thrown straight upward at an initial speed
makkiz [27]
Using the given formula with v0=56 ft/s and h=40 ft 
h = -16t2 + v0t  
40 = -16t2 + 56t 
16t2 - 56t + 40 = 0  
Solving the quadratic equation:  
t= (-b+/-(b^2-4ac)^1/2)/2a = (56+/-((-56)^2-4*16*40)^1/2)/2*16 = (56 +/- 24) / 32 
 We have two possible solutions  
t1 = (56+24)/32 = 2.5 
t2 = (56-24)/32 = 1  
So initially the ball reach a height of 40 ft in 1 second.
3 0
2 years ago
Other questions:
  • Police officer at rest at the side of the highway
    12·1 answer
  • the coefficient of static friction between a 40 kg picnic table and the ground below is .43. what is the greatest horizontal for
    14·2 answers
  • Urban cities like Atlanta have to contend with a serious problem like pollution. Drivers in California are testing out a car tha
    7·1 answer
  • A straight, nonconducting plastic wire 9.50 cm long carries a charge density of 130 nC/m distributed uniformly along its length.
    5·1 answer
  • Charlie is playing with his daughter Torrey in the snow. She sits on a sled and asks him to slide her across a flat, horizontal
    10·2 answers
  • A 5-kg can of paint is sitting on top of a 2-meter high step ladder. How much work did you do to move the can of paint to the to
    10·1 answer
  • Delicate measurements indicate that the Earth has an electric field surrounding it, similar to that around a positively charged
    9·1 answer
  • A jeweler is determining the optical properties of an unknown blue gemstone. She uses an angle of incidence of 62°, and measures
    7·1 answer
  • Un lector de DVD, la velocidad de giro es de 5400 rpm. determina el valor velocidad angular en rad/s,la frecuencia y el periodo
    13·1 answer
  • Which economic idea did Adam Smith promote in The Wealth of Nations?
    9·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!