Answer:
100/10 = 10 , 10 × 10 = 100÷20 = 5
I'm pretty sure its wrong
Answer:
2.7x10⁻⁸ N/m²
Explanation:
Since the piece of cardboard absorbs totally the light, the radiation pressure can be found using the following equation:

<u>Where:</u>
: is the radiation pressure
I: is the intensity of the light = 8.1 W/m²
c: is the speed of light = 3.00x10⁸ m/s
Hence, the radiation pressure is:

Therefore, the radiation pressure that is produced on the cardboard by the light is 2.7x10⁻⁸ N/m².
I hope it helps you!
You want v2 = v1 + at
v is measured in m/s, a in m/s2, and t in s.
the dimensions multiply like algebraic quantities.
so because v2 is measured in m/s, then (v1 + at) has to come out in m/s
the units for (v1 + at) are (m/s) + (m/s2)(s)
time "s" cancels out one acceleration "s", so it comes ut to (m/s) + (m/s), which = (m/s).
if you had (v1t + a), then you would have (m/s)(s) + (m/s2) which = (m) + (m/s2), which doesn't work.
Answer:
A) 0.33 m/s
Explanation:
The standard form of a transverse wave is given by
y
=
a cos
(
ω
t
−
kx
) , k
= 2
π / λ
Amplitude, a
= 0.002 m
Wavenumber (k)=47.12 and wavelength (
λ
) = 0.133
m
Time period(T)=0.0385 s and angular frequency (
ω
) = 52
π rad/s
Maximum speed of the string is given by aw
Therefore ; max. speed = 0.002 x 52 π = 0.327 m/s
Answer:
T = 60 s
Explanation:
There are 6 poles on the track which are equally spaced
so the angular separation between the poles is given as


so the angular speed of the train is given as


now we have time period of the train given as


