Answer:
The concept of conservation of momentum is applied in the particular case of collisions.
The general equation ig given by,

Where,

The crash occurs at an intersection so we must separate the two speeds by their respective vector: x, y.
In the case of the X axis, we have that the body
has a speed = 0, this because it is not the direction in which it travels, therefore

The same analysis must be given for the particular case in the Y direction, where the mass body
does not act with its velocity here, therefore:

We have the two components of a velocity vector given by

Get the magnitude,


With a direction given by

Answer:
<em>The gravitational force between Royce and Earth would be doubled at 16 years.</em>
Explanation:
<em>"Newton's law of universal gravitation states that gravitation force between two masses is proportional to the magnitude of their masses and inverse-squared of their distance".</em>
Royce Scenario
At the age of 10 Royce's mass = 30kg
At the age of 16 Royce's mass = 60kg
From Newton's law of universal gravitation, an Increase in the mass of a body would amount to a corresponding increase in the gravitational force.
In the case of Royce, the mass double between the age of 10 and 16, so there would be an increase of the gravitation force by double.
To solve this problem it is necessary to apply the concepts related to Newton's second law and the kinematic equations of movement description.
Newton's second law is defined as

Where,
m = mass
a = acceleration
From this equation we can figure the acceleration out, then



From the cinematic equations of motion we know that

Where,
Final velocity
Initial velocity
a = acceleration
x = displacement
There is not Final velocity and the acceleration is equal to the gravity, then





From the equation of motion where acceleration is equal to the velocity in function of time we have




Therefore the time required is 0.0705s
Answer:
The answer is: c. It does not move
Explanation:
Because the gravitational force is characterized by being an internal force within the Earth-particle system, in this case, the object of mass M. And since in this system there is no external force in the system, it can be concluded that the center of mass of the system will not move.
The answer is True. The amount force exerted by any object is directly proportional to its mass. This means that our planet is exerting more gravitational force to Angelina, and Angelina is also exerting a gravitational force on our planet directly proportional to her mass. Angelina is actually falling towards the center of the earth,and also our planet is also moving towards Angelina, but it seems negligible with respect to Angelina.Our Sun is so massive that it held our planet in its orbit because of its gravitational force.