Explanation:
The given data is as follows.
Mass of small bucket (m) = 4 kg
Mass of big bucket (M) = 12 kg
Initial velocity (
) = 0 m/s
Final velocity (
) = ?
Height
= 2 m
and,
= 0 m
Now, according to the law of conservation of energy
starting conditions = final conditions

235.44 =
+ 78.48
= 4.43 m/s
Thus, we can conclude that the speed with which this bucket strikes the floor is 4.43 m/s.
Answer:

Explanation:
The acceleration of an object is given by:

where
v is the final velocity
u is the initial velocity
t is the time interval it takes for the velocity to change from u to v
For the rocket in this problem,
u = 20,000 m/s
v = 24,000 m/s
t = 55.0 - 5.0 = 50.0 s
Substituting,

Correct option: A
An object remains at rest until a force acts on it.
As the water moves faster, it applies greater force on the sediment, which over comes the frictional forces between the bed and the sediment. So, when the river flows faster, more and larger sediment particles are carried away. When the flow slows down, the river couldn't apply enough force on the larger sediments which can overcome the frictional force between the sediment and the river bed. So, the net force on the heavier particles become zero. Hence, the heavier particles of the load will settle out.
Answer:
E=0
Explanation:
Electric field due to each thin sheet of charge=\sigma/2\varepsilon
let us say the right plate has positive charge density \varepsilonand left sheet has a negative charge density -\varepsilon .
In the region between the plates,the electric field due to each plate is in same direction,
E=\sigma/2\varepsilon-(-\sigma/2\varepsilon)
E=\sigma/\varepsilon
in the region outside the plates, the field due to the plates is in opposite directions
E=-\sigma/2\varepsilon-(-\sigma/2\varepsilon)
E=-\sigma/2\varepsilon+\sigma/2\varepsilon
E=0
Answer:

Explanation:
Given that initially ball moves in the horizontal direction ,it means that the velocity in the vertical direction is zero.
Horizontal distance = 13 m
Vertical distance = 57 cm
Lets take time to cover 57 cm distance in vertical direction is t.
We know that g is the constant acceleration in the vertical direction so we can apply the equation of motion in the vertical direction.

Here 
S= 57 cm

t=0.34 s
Now in the horizontal direction

Here x=13 m
t= 0.34 s
So


So the initial speed of ball is 38.13 m/s.