answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
tangare [24]
1 year ago
13

When work is done by an applied force, the object's energy will change. In this Interactive, does the work cause a kinetic energ

y change or a potential energy change?
Physics
1 answer:
Alex73 [517]1 year ago
6 0

Answer:

Explanation:

According to the work energy theorem, the work done by all the forces by a body is equal to the change in kinetic energy of the body.

Work done = change in kinetic energy

W = Final kinetic energy - initial kinetic energy

So, work causes change in kinetic energy.

You might be interested in
A toy rocket engine is securely fastened to a large puck that can glide with negligible friction over a horizontal surface, take
adell [148]

Answer:

F_{x}=2.31N to the right.

F_{y}=2.1N to in the upwards direction.

Explanation:

In order to solve this problem, we must first start by drawing a diagram of the situation. (See attached diagram).

So, remember that a force is determined by multiplying the mass of the parcticle by its acceleration:

F=ma

so in order to find the components of the force, we need to start by finding its acceleration.

Acceleration is found by using the following formula:

a=\frac{V_{f}-V{0}}{t}

so we can subtract the two vectors, like this:

a=\frac{(6.00i+4.0j)m/s-1.60i m/s}{8s}

which yields:

a=\frac{(4.4i+4.0j)m/s}{8s}

or:

a=(0.55i + 0.5j) m/s^{2}

so now I can find the components of the force:

F=(4.2kg)(0.55i + 0.5j) m/s^{2}

which yields:

F=(2.31i+2.1j)N

so the components of the force are:

F_{x}=2.31N to the right.

F_{y}=2.1N to in the upwards direction.

6 0
1 year ago
Calculate the force a 70.0-kg high jumper must exert on the ground to produce an upward acceleration 4.00 times the acceleration
worty [1.4K]

Answer:

3433.5 N

Explanation:

g = Acceleration due to gravity = 9.81 m/s²

m = Mass of person = 70 kg

According to the question

a = Acceleration

4g=4\times 9.81\\\Rightarrow a=39.24\ m/s^2

Balancing the forces we have

F-w=ma\\\Rightarrow F=ma+w\\\Rightarrow F=ma+mg\\\Rightarrow F=m(a+g)\\\Rightarrow F=70(39.24+9.81)\\\Rightarrow F=3433.5\ N

The required force is 3433.5 N

3 0
1 year ago
A projectile of mass m is fired horizontally with an initial speed of v0​ from a height of h above a flat, desert surface. Negle
Grace [21]

Complete question is;

A projectile of mass m is fired horizontally with an initial speed of v0 from a height of h above a flat, desert surface. Neglecting air friction, at the instant before the projectile hits the ground, find the following in terms of m, v0, h and g:

(a) the work done by the force of gravity on the projectile,

(b) the change in kinetic energy of the projectile since it was fired, and

(c) the final kinetic energy of the projectile.

(d) Are any of the answers changed if the initial angle is changed?

Answer:

A) W = mgh

B) ΔKE = mgh

C) K2 = mgh + ½mv_o²

D) No they wouldn't change

Explanation:

We are expressing in terms of m, v0​, h, and g. They are;

m is mass

v0 is initial velocity

h is height of projectile fired

g is acceleration due to gravity

A) Now, the formula for workdone by force of gravity on projectile is;

W = F × h

Now, Force(F) can be expressed as mg since it is force of gravity.

Thus; W = mgh

Now, there is no mention of any angles of being fired because we are just told it was fired horizontally.

Therefore, even if the angle is changed, workdone will not change because the equation doesn't depend on the angle.

B) Change in kinetic energy is simply;

ΔKE = K2 - K1

Where K2 is final kinetic energy and K1 is initial kinetic energy.

However, from conservation of energy, we now that change in kinetic energy = change in potential energy.

Thus;

ΔKE = ΔPE

ΔPE = U2 - U1

U2 is final potential energy = mgh

U1 is initial potential energy = mg(0) = 0. 0 was used as h because at initial point no height had been covered.

Thus;

ΔKE = ΔPE = mgh

Again like a above, the change in kinetic energy will not change because the equation doesn't depend on the angle.

C) As seen in B above,

ΔKE = ΔPE

Thus;

½mv² - ½mv_o² = mgh

Where final kinetic energy, K2 = ½mv²

And initial kinetic energy = ½mv_o²

Thus;

K2 = mgh + ½mv_o²

Similar to a and B above, this will not change even if initial angle is changed

D) All of the answers wouldn't change because their equations don't depend on the angle.

5 0
2 years ago
Water (cp = 4180 J/kg·K) is to be heated by solar-heated hot air (cp = 1010 J/kg·K) in a double-pipe counter-flow heat exchanger
Inessa [10]

Answer:

452%

Explanation:

3 0
2 years ago
A vertical cylinder is divided into two parts by a movable piston of mass m. The piston and cylinder system is well insulated (t
Mekhanik [1.2K]

Answer:

Final temperature will be 438.076 K

Explanation:

We have given temperature T_1=323K

Volume V_1=V\ and\ V_2=\frac{V}{2}

As there is no heat transfer so this is an adiabatic process

For and adiabatic process TV^{\gamma -1}=constant

Here \gamma =1.4

So T_1V_1^{\gamma -1}=T_2V_2^{\gamma -1}

T_2=\left ( \frac{V_1}{V_2} \right )^{\gamma -1}\times T_1

T_2=\left ( \frac{V}{\frac{V}{2}} \right )^{1.4 -1}\times 332=2^{0.4}\times 332=438.076K

4 0
2 years ago
Other questions:
  • A car possesses 20,000 units of momentum. what would be the car's new momentum if ... its velocity was doubled?
    12·1 answer
  • As a moon follows its orbit around a planet, the maximum grav- itational force exerted on the moon by the planet exceeds the min
    9·1 answer
  • Which has a larger resistance a 60 w lightbulb or a 100 w lightbulb?
    14·1 answer
  • Which of the following statements about comets is true? A. Comets rarely fall into an orbit around the Sun. They usually enter t
    9·2 answers
  • The helicopter in the drawing is moving horizontally to the right at a constant velocity. The weight of the helicopter is W=4900
    5·1 answer
  • Can a body possess velocity at the same time in horizontal and vertical directions?​
    9·1 answer
  • In 2014, the Rosetta space probe reached the comet Churyumov Gerasimenko. Although the comet's core is actually far from spheric
    14·1 answer
  • Identify the row that contains two scalars and one vector quantity: Distance Acceleration Velocity Speed Mass Acceleration Dista
    12·1 answer
  • Assume you are given an int variable named nElements and a 2-dimensional array that has been created and assigned to a2d. Write
    11·1 answer
  • 3. The expression 0.62 x10^3 is equivalent to...
    8·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!