Answer:
1027.2 m
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity
s = Displacement
a = Acceleration due to gravity = 32.2 ft/s


The height the tomato would fall is 450+577.2 = 1027.2 m
<h3><u>Answer</u>;</h3>
= 22°
<h3><u>Explanation</u>;</h3>
- According to Snell's law, the ratio of the sine of the angle of incidence to the sine of the angle of refraction is a constant. The constant value is called the refractive index of the second medium with respect to the first.
- Therefore; Sin i/Sin r = η
In this case; Angle of incidence = 90° -60° =30°, angle of refraction =? and η = 1.33
Thus;
Sin 30 / Sin r = 1.33
Sin r = Sin 30°/1.33
= 0.3759
r = Sin^-1 0.3759
= 22.08
<u>≈ 22°</u>
In a series circuit . . .
-- The total resistance is the sum of the individual resistors.
-- The current is the same at every point in the circuit.
The total resistance in this circuit is (3Ω + 6Ω ) = 9Ω
The current at every point is (V/R) = (12v / 9Ω ) = <em>1.33 A</em> .
Pick choice<em> (a)</em>.
We are given information:

If we apply Newton's second law we can calculate acceleration:
F = m * a
a = F / m
a = 25000 / 10000
a = 2.5 m/s^2
Now we can use this information to calculate change of speed.
a = v / t
v = a * t
v = 2.5 * 120
v = 300 m/s
Force is being applied in direction that is opposite to a direction in which space craft is moving. This means that final speed will be reduced.
v = 1200 - 300
v = 900 m/s
Formula for momentum is:
p = m * v
Initial momentum:
p = 10000 * 1200
p = 12 000 000
p = 12 *10^6 kg*m/s
Final momentum:
p = 10000 * 900
p = 9 000 000
p = 9 *10^6 kg*m/s