answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Kamila [148]
2 years ago
6

In coordinates with the origin at the barn door, the cow walks from x 0 to x 6.9 m as you apply a force with x component Fx 320.

0 N 13.0 N m2x4. How much work does the force you apply to do on the cow during this displacement?
Physics
1 answer:
Stella [2.4K]2 years ago
5 0

Answer:

-209.42J

Explanation:

Here is the complete question.

A balky cow is leaving the barn as you try harder and harder to push her back in. In coordinates with the origin at the barn door, the cow walks from x = 0 to x = 6.9 m as you apply a force with x-component Fx=−[20.0N+(3.0N/m)x]. How much work does the force you apply do on the cow during this displacement?

Solution

The work done by a force W = ∫Fdx since our force is variable.

Since the cow moves from x₁ = 0 m to x₂ = 6.9 m and F = Fx =−[20.0N+(3.0N/m)x] the force applied on the cow.

So, the workdone by the force on the cow is  

W = ∫₀⁶°⁹Fx dx = ∫₀⁶°⁹−[20.0N+(3.0N/m)x] dx

= ∫₀⁶°⁹−[20.0Ndx - ∫₀⁶°⁹(3.0N/m)x] dx

= −[20.0x]₀⁶°⁹ - [3.0x²/2]₀⁶°⁹

= -[20 × 6.9 - 20 × 0] - [3.0 × 6.9²/2 - 3.0 × 0²/2]

= -[138 - 0] - [71.415 - 0] J = (-138 - 71.415) J

= -209.415 J ≅ -209.42J

You might be interested in
You and your family take a trip to see your aunt who lives 100 miles away along a straight highway. The first 60 miles of the tr
Nitella [24]

Answer:

51.2 mi/h

Explanation:

Total distance, d = 100 miles

First 60 miles with speed 55 mi/h

Next 40 miles with speed 75 mi/h

Time taken for first 60 miles, t1 = 60 / 55 = 1.09 h

Time taken for 40 miles, t2 = 40 / 75 = 0.533 h

Time spent to get stuck, t3 = 20 min = 0.33 h

Total time, t = t1 + t2 + t3 = 1.09 + 0.533 + 0.33 = 1.953 h

The average speed is defined as the ratio of total distance traveled to the total time taken.

Average speed = =\frac{100}{1.953}=51.2 mi/h

Thus, the average speed of the journey is 51.2 mi/h.

4 0
2 years ago
A 0.200-kg mass attached to the end of a spring causes it to stretch 5.0 cm. If another 0.200-kg mass is added to the spring, th
ziro4ka [17]

Answer:

A: 4 times as much

B: 200 N/m

C: 5000 N

D: 84,8 J

Explanation:

A.

In the first question, we have to caculate the constant of the spring with this equation:

m*g=k*x

Getting the k:

k=\frac{m*g}{x} =\frac{0,2[kg]*9,81[\frac{m}{s^{2} } ]}{0,05[m]} =39,24[\frac{N}{m}]

Then we can calculate how much the spring stretch whith the another mass of 0,2kg:

x=\frac{m*g}{k} =\frac{0,4[kg]*9,81[\frac{m}{s^{2} } ]}{39,24[\frac{N}{m}]} =0,1[m]\\

The energy of a spring:

E=\frac{1}{2}*k*x^{2}

For the first case:

E=\frac{1}{2} *39,24[\frac{N}{m}]*(0,05[m])^{2} =0,049 [J]

For the second case:

E=\frac{1}{2} *39,24[\frac{N}{m}]*(0,1[m])^{2} =0,0196 [J]

If you take the relation E2/E1 = 4.

B.

We have the next facts:

x=0,005 m

E = 0,0025 J

Using the energy equation for a spring:

E=\frac{1}{2}*k*x^{2}⇒k=\frac{E*2}{x^{2} } =\frac{0,0025[J]*2}{(0,005[m])^{2} } =200[\frac{N}{m} ]

C.

The potential energy of the diver will be equal to the kinetic energy in the moment befover hitting the watter.

E=W*h=500[N]*10[m]=5000[J]

Watch out the units in this case, the 500 N reffer to the weighs of the diver almost relative to the earth, thats equal to m*g.

D.

The work is equal to the force acting in the direction of the motion. so we have to do the diference beetwen angles to obtain the effective angle where the force is acting: 47-15=32 degree.

The force acting in the direction of the ramp will be the projection of the force in the ramp, equal to F*cos(32). The work will be:

W=F*d=F*cos(32)*d=10N*cos(32)*10m=84,8J

7 0
2 years ago
Which method should be used to determine which type of natural event produces the greatest number of sand dunes?
jeka94

Answer:

Stabilizing dunes involves multiple actions. Planting vegetation reduces the impact of wind and water. Wooden sand fences can help retain sand and other material needed for a healthy sand dune ecosystem. Footpaths protect dunes from damage from foot traffic.

Explanation:

5 0
2 years ago
Suppose you want to make a scale model of a hydrogen atom. You choose, for the nucleus, a small ball bearing with a radius of 1.
RoseWind [281]

Answer:

A)  x _electron = 0.66 10² m , B)   x _Eart = 1.13 10² m , C)  d_sphere = 1.37 10⁻² mm

Explanation:

A) Let's use a ball for the nucleus, the electron is at a farther distance the sphere for the electron must be at a distance of

Let's use proportions rule

                x_ electron = 0.529 10⁻¹⁰ /1.2 10⁻¹⁵ 1.5

               x _electron = 0.66 10⁵ mm = 0.66 10² m

B) the radii of the Earth and the sun are

               R_{E} = 6.37 10⁶ m

                tex]R_{Sum}[/tex] = 6.96 10⁸ m

                Distance = 1.5 10¹¹ m

                x_Earth = 1.5 10¹¹ / 6.96 10⁸  1.5

                x _Eart = 1.13 10² m

C) The radius of a sphere that represents the earth, if the sphere that represents the sun is 1.5 mm, let's use another rule of proportions

            d_sphere = 1.5 / 6.96 10⁸  6.37 10⁶

            d_sphere = 1.37 10⁻² mm

5 0
2 years ago
A bird is flying in a room with a velocity field of . Calculate the temperature change that the bird feels after 9 seconds of fl
Korvikt [17]

Complete Question

The complete question is shown on the first uploaded image

Answer:

The temperature change is \frac{dT}{dt} = 1.016 ^oC/m

Explanation:

From the question we are told that

   The velocity field with which the bird is flying is  \vec V =  (u, v, w)= 0.6x + 0.2t - 1.4 \ m/s

   The temperature of the room is  T(x, y, u) =  400 -0.4y -0.6z-0.2(5 - x)^2 \  ^o C

    The time considered is  t =  10 \  seconds

    The  distance that the bird flew is  x  =  1 m

 Given that the bird is inside the room then the temperature of the room is equal to the temperature of the bird

Generally the change in the bird temperature with time is mathematically represented as

      \frac{dT}{dt} = -0.4 \frac{dy}{dt} -0.6\frac{dz}{dt} -0.2[2 *  (5-x)] [-\frac{dx}{dt} ]

Here the negative sign in \frac{dx}{dt} is because of the negative sign that is attached to x in the equation

 So

       \frac{dT}{dt} = -0.4v_y  -0.6v_z -0.2[2 *  (5-x)][ -v_x]

From the given equation of velocity field

    v_x  =  0.6x

    v_y  =  0.2t

     v_z  =  -1.4

So

\frac{dT}{dt} = -0.4[0.2t]  -0.6[-1.4] -0.2[2 *  (5-x)][ -[0.6x]]    

substituting the given values of x and t

\frac{dT}{dt} = -0.4[0.2(10)]  -0.6[-1.4] -0.2[2 *  (5-1)][ -[0.61]]      

\frac{dT}{dt} = -0.8 +0.84 + 0.976  

\frac{dT}{dt} = 1.016 ^oC/m  

5 0
2 years ago
Other questions:
  • what did classical physics predict about electron flow as a result of light shining on a metal surface?
    8·1 answer
  • An object of mass 8.0 kg is attached to an ideal massless spring and allowed to hang in the Earth's gravitational field. The spr
    5·2 answers
  • A cyclist moving towards right with an acceleration of 4m/s² at t = 0 he has travelled 5 m moving towards the right at 15 m/s wh
    7·1 answer
  • 89. An electron is moving in a straight line with a velocity of 4.0×105 m/s. It enters a region 5.0 cm long where it undergoes a
    14·1 answer
  • If Emily throws the ball at an angle of 30∘ below the horizontal with a speed of 12m/s, how far from the base of the dorm should
    8·1 answer
  • A block weighing 400 kg rests on a horizontal surface and supports on top of it ,another block of weight 100 kg which is attache
    10·1 answer
  • Technician A says test lights are great for quick tests on non-computerized circuits. Technician B says you can use a test light
    5·1 answer
  • Spacecraft have been sent to Mars in recent years. Mars is smaller than Earth and has correspondingly weaker surface gravity. On
    7·1 answer
  • A solenoid 10.0 cm in diameter and 75.0 cm long is made from copper wire of diameter 0.100 cm, with very thin insulation. The wi
    6·2 answers
  • On the image at right, the two magnets are the same. Which paper clip would be harder to remove?
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!