B
Think of inertia of getting into a car accident without a seat belt although the car stops you will not you would likely fly out the window
Time before projectile hits wall
= 88.2 m / 29.4 m/s = 3 seconds
Vertical velocity of projectile after three seconds
= 3*9.8 = 29.4 m/s
Horizontal velocity of projectile after three seconds, assuming no air resistance
= 29.4 m/s (given)
Conclusion:
velocity of projectile when it hits the wall
= < 29.4, -29.4> m/s
= sqrt(29.4^2+29.4^2) m/s east-bound at 45 degrees below horizontal
= 41.58 m/s east-bound at 45 degrees below horizontal.
Answer:

Explanation:
The word 'nun' for thickness, I will interpret in international units, that is, mm.
We will begin by defining the intensity factor for the steel through the relationship between the safety factor and the fracture resistance of the panel.
The equation is,

We know that
is 33Mpa*m^{0.5} and our Safety factor is 2,

Now we will need to find the average width of both the crack and the panel, these values are found by multiplying the measured values given by 1/2
<em>For the crack;</em>

<em>For the panel</em>

To find now the goemetry factor we need to use this equation

That allow us to determine the allowable nominal stress,


\sigma_{allow} = 208.15Mpa
So to get the force we need only to apply the equation of Force, where



That is the maximum tensile load before a catastrophic failure.
Answer:
neutral
Explanation:
3p - 3e = 0 and that leaves 2 neutrons so it will be neutral
This question deals with the law of conservation of momentum, which basically says that the total momentum in a system must stay the same, provided there are no outside forces. Since you were given the mass and velocity of the two objects you can find the momentum (p=mv) of each and then add them together to find the total momentum of the system before they collide. This total momentum must be the same after they collide. Since you have the mass and velocity of one of the objects after the collision you can find the its momentum after. Subtract this from the the system total and you will have the momentum of the other object after the collision. Now that you know the momentum of the other object you can find its velocity using p=mv and its mass from before.
Be careful with the velocities. They are vectors, so direction matters. Typically moving to the right is positive (+) and moving to the left is negative (-). It is not clear from your question which direction the objects are moving before and after the collision.