Answer:
F = 10.788 N
Explanation:
Given that,
Charge 1, 
Charge 2, 
Distance between charges, d = 0.1 m
We know that there is a force between charges. It is called electrostatic force. It is given by :

So, the force applied between charges is 10.788 N.
Answer:
Explanation:
a )
This type of spectrum is called line emission spectrum . Because it consists of lines . It is emission spectrum because it is due to emission of radiation from a source .
b ) The wavelength of a photon is inversely proportional to its energy . Photon due to transition between n = 1 and n = 3 will have higher energy than
that due to transition between n = 2 and n = 5 . So the later photon ( B) will have greater wavelength or photon due to transition between n = 2 and n = 5 will have greater wavelength .
The force tending to lift the load (vertical force) is equal to <u>22.5N.</u>
Why?
Since the boy is pulling a load (150N) with a string inclined at an angle of 30° to the horizontal, the total force will have two components (horizontal and vertical component), but we need to consider the given information about the tension of the string which is equal to 105N.
We can calculate the vertical force using the following formula:

Hence, we can see that <u>the force tending to lift the load</u> off the ground (vertical force) is equal to <u>22.5N.</u>
Have a nice day!
Answer:
the wavelength λ of the light when it is traveling in air = 560 nm
the smallest thickness t of the air film = 140 nm
Explanation:
From the question; the path difference is Δx = 2t (since the condition of the phase difference in the maxima and minima gets interchanged)
Now for constructive interference;
Δx= 
replacing ;
Δx = 2t ; we have:
2t = 
Given that thickness t = 700 nm
Then
2× 700 =
--- equation (1)
For thickness t = 980 nm that is next to constructive interference
2× 980 =
----- equation (2)
Equating the difference of equation (2) and equation (1); we have:'
λ = (2 × 980) - ( 2× 700 )
λ = 1960 - 1400
λ = 560 nm
Thus; the wavelength λ of the light when it is traveling in air = 560 nm
b)
For the smallest thickness 
∴ 



Thus, the smallest thickness t of the air film = 140 nm
Velocity =
(distance between start point and end point, regardless of the route traveled) / (time spent traveling).
That distance (called the "displacement"), is 10 meters, and almost exactly 1 hour is almost exactly 3,600 seconds. So the numerical value of the velocity during that time is
(10) / (3,600) = almost exactly 0.00278 m/s
= 2.78 x 10^-3 m/s.