Answer:
I. The horizontal distance traveled by the bullet is greater for the Moon.
II. The flight time is less for the bullet on the Earth.
Explanation:
Horizontal distance depends on the initial speed, height and gravity. Bullets have the same initial speed and are shot from the same height. In these conditions horizontal distance only depends on gravity, which is inversely proportional. Therefore, the less gravity the greater the horizontal distance. Gravity slows bullet and causes its impact on the ground. Since gravity is greater in Earth, the bullet hits faster on the earth.
Answer:
1331.84 m/s
Explanation:
t = Time taken
u = Initial velocity
v = Final velocity = 0
s = Displacement = 490 km
a = Acceleration
g = Acceleration due to gravity = 1.81 m/s² = a
From equation of linear motion

The speed of the material must be 1331.84 m/s in order to reach the height of 490 km
Answer:
0.02
Explanation:
coefficient of kinetic friction = μ
force of friction = Ff
Normal Force = FN, but
FN = -W
Ff = -μFN
so μ = Ff/FN
= 4N/200N
= 0.02.
Answer:
(A) v = 14.8m/s
Explanation:
(A) V = sqrt(k/m) × A = sqrt(22/0.1) × 0.29 =14.8m/s.