Answer:
6.05 cm
Explanation:
The given equation is
2 aₓ(x-x₀)=( Vₓ²-V₀ₓ²)
The initial head velocity V₀ₓ =11 m/s
The final head velocity Vₓ is 0
The accelerationis given by =1000 m/s²
the stopping distance = x-x₀=?
So we can wind the stopping distance by following formula
2 (-1000)(x-x₀)=[
]
x-x₀=6.05*
m
=6.05 cm
Efficiency is defined as the measure of the amount of work or energy is conserved in a certain process. At all times, in every process, work or energy is always lost or wasted due to certain interference. Not all work given is converted to useful work or energy. Thus , efficiency is calculated by dividing the energy or work output to the energy or work input then the value is multiplied by 100 to express efficiency as percentage.
Efficiency = work output / work input
Efficiency = (1020 J / 1200 J) = 85%
Answer:
The Jovian planets formed beyond the Frostline while the terrestrial planets formed in the Frostline in the solar nebular
Explanation:
The Jovian planets are the large planets namely Saturn, Jupiter, Uranus, and Neptune. The terrestrial planets include the Earth, Mercury, Mars, and Venus. According to the nebular theory of solar system formation, the terrestrial planets were formed from silicates and metals. They also had high boiling points which made it possible for them to be located very close to the sun.
The Jovian planets formed beyond the Frostline. This is an area that can support the planets that were made up of icy elements. The large size of the Jovian planets is as a result of the fact that the icy elements were more in number than the metal components of the terrestrial planets.
Answer:

Explanation:
The free body diagram of the block on the slide is shown in the below figure
Since the block is in equilibrium we apply equations of statics to compute the necessary unknown forces
N is the reaction force between the block and the slide
For equilibrium along x-axis we have

Using value of N from equation β in α we get value of force as

Applying values we get

Answer: Sean is standing still, and Rhea is running toward Sean while kicking the ball
Explanation: Your welcome :)