Answer:
Explanation:
Given two vectors as follows
E₁ = 13.5 i -12 j
E₂ = -7.4 i - 4.7 j
Resultant E = E₁ + E₂
= 13.5 i -12 j -7.4 i - 4.7 j
E = 6.1 i - 16.7 j
a ) X component of resultant = 6.1 N
b ) y component of resultant = -16.7 N
Magnitude of resultant = √ ( 6.1² + 16.7² )
= 17.75 N
d ) If θ be the required angle
tanθ = 16.7 / 6.1 = 2.73
θ = 70° .
counterclockwise = 360 - 70 = 290°
As an object accelerates i.e., change it's velocity(either direction or speed), the position of the object depends on two factor; If the acceleration was direction based then it might have a zero displacement for eg: if it travels in circle. or it might have a net displacement if it travels in a straight line, quantitatively

where,
s = displacement
u = initial velocity
v = final velocity
a = acceleration
t = time
Now, for the hypothesis;
There is no direct relationship between fan speed and acceleration but anyways generally speaking if we do have a relationship that with more fan speed we have a larger displacement of air i.e., a more force i.e., greater acceleration
Thus, it can be said, well not exactly scientific, that with a greater fan speed there will be greater acceleration. if fan speed is increased then acceleration will be more.
:)
Answer:
60.8 cm²
Explanation:
The charge density, σ on the surface is σ = Q/A where q = charge = 87.6 pC = 87.6 × 10⁻¹² C and A = area = 65.2 cm² = 65.2 × 10⁻⁴ m².
σ = Q/A = 87.6 × 10⁻¹² C/65.2 × 10⁻⁴ m² = 1.34 × 10⁻⁸ C/m²
Now, the charge through the Gaussian surface is q = σA' where A' is the charge in the Gaussian surface.
Since the flux, Ф = 9.20 Nm²/C and Ф = q/ε₀ for a closed Gaussian surface
So, q = ε₀Ф = σA'
ε₀Ф = σA'
making A' the area of the Gaussian surface the subject of the formula, we have
A' = ε₀Ф/σ
A' = 8.854 × 10⁻¹² F/m × 9.20 Nm²/C ÷ 1.34 × 10⁻⁸ C/m²
A' = 81.4568/1.34 × 10⁻⁴ m²
A' = 60.79 × 10⁻⁴ m²
A' ≅ 60.8 cm²
Answer:
= 85.89 ° C
Explanation:
The linear thermal expansion process is given by
ΔL = L α ΔT
For the three-dimensional case, the expression takes the form
ΔV = V β ΔT
Let's apply this equation to our case
ΔV / V = -0.507% = -0.507 10-2
ΔT = (ΔV / V) 1 /β
ΔT = -0.507 10⁻² 1 / 1.15 10⁻³
ΔT = -4.409
–T₀ = 4,409
= T₀ - 4,409
= 90.3-4409
= 85.89 ° C
To find the number of electrons transferred, we should divide the total charge acquired by the rod

by the charge of a single electron (

), and we find: