Answer:
A) F = - 8.5 10² N, B) I = 21 N s
Explanation:
A) We can solve this problem using the relationship of momentum and momentum
I = Δp
in this case they indicate that the body rebounds, therefore the exit speed is the same in modulus, but with the opposite direction
v₀ = 8.50 m / s
v_f = -8.50 m / s
F t = m v_f -m v₀
F =
let's calculate
F =
F = - 8.5 10² N
B) let's start by calculating the speed with which the ball reaches the ground, let's use the kinematic relations
v² = v₀² - 2g (y- y₀)
as the ball falls its initial velocity is zero (vo = 0) and the height upon reaching the ground is y = 0
v =
calculate
v =
v = 14 m / s
to calculate the momentum we use
I = Δp
I = m v_f - mv₀
when it hits the ground its speed drops to zero
we substitute
I = 1.50 (0-14)
I = -21 N s
the negative sign is for the momentum that the ground on the ball, the momentum of the ball on the ground is
I = 21 N s
Answer:
As the person moves down the zip wire, her increase in kinetic energy is less than her decrease in gravitational potential energy.
Explanation:
Work is done against the air resistance, causing thermal energy to transfer to the surroundings
Infiltration
Explanation:
The component of the hydrologic cycle affected by impervious building such as concrete and asphalt is infiltration.
- Water infiltration is a major component of the hydrologic cycle.
- Concretes and other materials can prevent water from going down into the earth.
- This affects the ground water system in place.
- It leads to increase in surface run off and might cause inundation of an area.
- Infiltration is a very important component of water cycle.
- It takes water to plant root and recharges groundwater systems.
- Impervious structures takes this capability away.
learn more:
Biogeochemical cycle brainly.com/question/3509510
#learnwithBrainly
Answer:
i(t) = (E/R)[1 - exp(-Rt/L)]
Explanation:
E−vR−vL=0
E− iR− Ldi/dt = 0
E− iR = Ldi/dt
Separating te variables,
dt/L = di/(E - iR)
Let x = E - iR, so dx = -Rdi and di = -dx/R substituting for x and di we have
dt/L = -dx/Rx
-Rdt/L = dx/x
interating both sides, we have
∫-Rdt/L = ∫dx/x
-Rt/L + C = ㏑x
x = exp(-Rt/L + C)
x = exp(-Rt/L)exp(C) A = exp(C) we have
x = Aexp(-Rt/L) Substituting x = E - iR we have
E - iR = Aexp(-Rt/L) when t = 0, i(0) = 0. So
E - i(0)R = Aexp(-R×0/L)
E - 0 = Aexp(0) = A × 1
E = A
So,
E - i(t)R = Eexp(-Rt/L)
i(t)R = E - Eexp(-Rt/L)
i(t)R = E(1 - exp(-Rt/L))
i(t) = (E/R)(1 - exp(-Rt/L))
Where are the following sketches?