Answer:
the correct statement is the first
The law of conservation of mass indicates the same amount of carbon will be found in the reactants as in the products.
Explanation:
The law of conservation of energy establishes that the masses are not destroyed, they can only be transformed.
Therefore the mass of carbon in the reactants (CO2 and H2O) must be in the products (glucose and oxygen)
so the correct statement is the first
The law of conservation of mass indicates the same amount of carbon will be found in the reactants as in the products.
Answer:
Distance between peak height (vertically) of projectile and mountain height = (2975.2 - 1800) = 1175.2 m
Distance between where the projectile lands and ship B = (3188.8 - 3110) = 8.8 m
Explanation:
Given the velocity and angle of shot of the projectile, one can calculate the range and maximum height attained by the projectile.
H = (v₀² Sin²θ)/2g
v₀ = initial velocity of projectile = 2.50 × 10² m/s = 250 m/s
θ = 75°, g = 9.8 m/s²
H = 250² (Sin² 75)/(2 × 9.8) = 2975.2 m
Range of projectile
R = v₀² (sin2θ)/g
R = 250² (sin2×75)/9.8
R = 250² (sin 150)/9.8 = 3188.8 m
Height of mountain = 1.80 × 10³ = 1800 m
Maximum height of projectile = 2975.2 m
Distance between peak height (vertically) of projectile and mountain height = 2975.2 - 1800 = 1175.2 m
Distance of ship B from ship A = 2.5 × 10³ + 6.1 × 10² = 2500 + 610 = 3110 m
Range of projectile = 3188.8 m
Distance between where the projectile lands and ship B = 3188.8 - 3110 = 8.8 m
The relationship between resistance R and resistivity

is

where L is the length of the wire and A its cross section.
The radius of the wire is half the diameter:

and the cross section is

From the first equation, we can then find the length of the wire when

(copper resistivity:

)