Answer:
Wet surfaces areaA=+25.3ft^2
Explanation:
Using F= K×A× S^2
Where F= drag force
A= surface area
S= speed
Given : F=996N S=20mph A= 83ft^2
K = F/AS^2=996/(83×20^2)
K= 996/33200 = 0.03
1215= (0.03)× A × 18^2
1215=9.7A
A=1215/9.7=125.3ft^2
From tables, the speed of sound at 0°C is approximately
V₁ = 331 m/s (in air)
V₃ = 5130 m/s (in iron)
Distance traveled is
d = 100 km = 10⁵ m
Time required to travel in air is
t₁ = d/V₁ = 10⁵/331 = 302.12 s
Time required to travel in iron is
t₂ = d/V₂ = 10⁵/5130 = 19.49 s
The difference in time is
302.12 - 19.49 = 282.63 s
Answer: 283 s (nearest second)
Answer:

Explanation:
For the first ball, the moment of inertia and the kinetic energy is:


So, replacing, we get that:

At the same way, the moment of inertia and kinetic energy for second ball is:


So:

Then,
is equal to
, so:




Finally, solving for
, we get:

Answer:
The correct answer is c. When the balloon hits the ground, the rubber envelope stretches, storing elastic potential energy; this elastic potential energy is converted to the gravitational potentiaL
Explanation:
Let's analyze the situation of the globe
When it touches the ground, the part that is in contact decreases its velocity to zero, but the upper part of the ball continues to move, which creates that the molecules approach slightly, if we approximate the spring links, a repulsive force is created that after all the particles reach zero speed. The force of the springs moves the ball up until the force decreases to zero.
We can relate this force of Hooke with an elastic energy
This energy can be stored in the deformation of the system, as elastic potential energy, which is subsequently transformed into gravitational potential energy when the balloon is lifted.
The correct answer is c
Answer:
The water will flow at a speed of 3,884 m/s
Explanation:
Torricelli's equation
v = 
*v = liquid velocity at the exit of the hole
g = gravity acceleration
h = distance from the surface of the liquid to the center of the hole.
v =
= 3,884 m/s