Answer:
35 J
Explanation:
The man is holding the box: this means that he is applying a force vertically upward, to balance the weight of the box (which pushes downward).
Therefore, we can ignore the horizontal displacement of the man, because the force applied (vertically upward) is perpendicular to that displacement (horizontal), so the work done for that is zero.
So, only the vertical motion contributes to the work. The work done by the man is equal to the gain in gravitational potential energy of the box, so:

where
is the weight of the box
is the vertical displacement
Substituting, we find

Positions. Happy to help! Please mark as Brainliest!
Find Displacement and Distance
displacement ...
north is 700+400+100 =1200m n
south=1200m
1200-1200=0
east is 300+300=600m
west is 600m
600-600=0
back at dtart. displ zero
distance is 700+ 300m + 400 m + 600m + 1200m + 300m + 100m = 3600m
In a series circuit . . .
-- The total resistance is the sum of the individual resistors.
-- The current is the same at every point in the circuit.
The total resistance in this circuit is (3Ω + 6Ω ) = 9Ω
The current at every point is (V/R) = (12v / 9Ω ) = <em>1.33 A</em> .
Pick choice<em> (a)</em>.
Answer:
(B) (length)/(time³)
Explanation
The equation x = ½ at² + bt³ has to be dimensionally correct. In other words the term bt³ and ½ at² must have units of change of position = length.
We solve in order to find the dimension of b:
[x]=[b]*[t]³
length=[b]*time³
[b]=length/time³