Answer:
The airplane should release the parcel
m before reaching the island
Explanation:
The height of the plane is
, and its speed is v=150 m/s
When an object moves horizontally in free air (no friction), the equation for the y measured with respect to ground is
[1]
And the distance X is
x = V.t [2]
Being t the time elapsed since the release of the parcel
If we isolate t from the equation [1] and replace it in equation [2] we get

Using the given values:

x =
m
Thermal energy in the form of fire is generated by the combustion of fuel. Due to the tendency of hot air to rise upward, the heat generated rises to fill the space of the balloon. One this space is full of trapped hot air, the heat's tendency to rise causes the hot air balloon to be lifted into the air.
Answer:
(D) It is moving at a constant speed
Explanation:
Before t = 1s. Due to the force, albeit small, acting on the object, since there's no static friction stopping the object from moving, this mass object would have a constant acceleration and it's velocity would be increasing.
According to Newton's 1st law, an object will stay at a constant speed if the net force acting on it is 0. After t = 1s, horizontally speaking there's no other force exerting on the mass object. There is no friction force at play here as the surface is frictionless.
Therefore the correct statement is (D) It is moving at a constant speed
Answer:
v = 1176.23 m/s
y = 741192.997 m = 741.19 km
Explanation:
Given
M₀ = 9 Kg (Initial mass)
me = 0.225 Kg/s (Rate of fuel consumption)
ve = 1980 m/s (Exhaust velocity relative to rocket, leaving at atmospheric pressure)
v = ? if t = 20 s
y = ?
We use the equation
v = ∫((ve*me)/(M₀ - me*t)) dt - ∫g dt where t ∈ (0, t)
⇒ v = - ve*Ln ((M₀ - me*t)/M₀) - g*t
then we have
v = - 1980 m/s*Ln ((9 Kg - 0.225 Kg/s*20 s)/(9 Kg)) - (9.81 m/s²)(20 s)
v = 1176.23 m/s
then we apply the formula
y = ∫v dt = ∫(- ve*Ln ((M₀ - me*t)/M₀) - g*t) dt
⇒ y = - ve* ∫ Ln ((M₀ - me*t)/M₀) dt - g*∫t dt
⇒ y = - ve*(Ln((M₀ - me*t)/M₀)*t + (M₀/me)*(M₀ - me*t - M₀*Ln(M₀ - me*t))) - (g*t²/2)
For t = 20 s we have
y = Ln((9 Kg - 0.225 Kg/s*20 s)/9 Kg)*(20 s) + (9 Kg/0.225 Kg/s)*(9 Kg - 0.225 Kg/s*20 s - 9 Kg*Ln(9 Kg - 0.225 Kg/s*20 s)) - (9.81 m/s²*(20 s)²/2)
⇒ y = 741192.997 m = 741.19 km
The graphs are shown in the pics.
Answer:

Explanation:
As we know that net displacement is

altitude is given as

so its horizontal displacement is given as



now we have


now in x direction we have

in y direction we have

from above equations we have

by solving above equation
