answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
olga2289 [7]
2 years ago
6

Consider a lawnmower of mass m which can slide across a horizontal surface with a coefficient of friction μ. In this problem the

lawnmower is pushed using a massless handle, which makes an angle θ with the horizontal. Assume that Fh, the force exerted by the handle, is parallel to the handle.
Take the positive x direction to be to the right and the postive y direction to be upward. Use g for the magnitude of the acceleration due to gravity.

Part A

Find the magnitude, Fh, of the force required to slide the lawnmower over the ground at constant speed by pushing the handle.

Express the required force in terms of given quantities.

Fh =
SubmitHintsMy AnswersGive UpReview Part

Incorrect; Try Again; 5 attempts remaining

Part B

This question will be shown after you complete previous question(s).

Provide FeedbackContinue
Physics
1 answer:
inna [77]2 years ago
5 0

Answer:

Fh = u*m*g / (cos(θ) - u*sin(θ))

Explanation:

Given:

- The mass of lawnmower = m

- The angle the handle makes with the horizontal = θ

- The force applied along the handle = Fh

- The coefficient of friction of the lawnmower with ground = u

Find:

Find the magnitude, Fh, of the force required to slide the lawnmower over the ground at constant speed by pushing the handle.

Solution:

- Construct a Free Body Diagram (FBD) for the lawnmower.

- Realize that there is horizontal force applied parallel to ground due to Fh that drives the lawnmower and a friction force that opposes this motion. We will use to Newton's law of motion to express these two forces in x-direction as follows:

                                     F_net,x = m*a

- Since, the lawnmower is to move with constant speed then we have a = 0.

                                     F_net,x = 0

- The forces as follows:

                                     Fh*cos(θ) - Ff = 0

Where, Ff is the frictional force:

                                     Fh = Ff /cos(θ)

Similarly, for vertical direction y the forces are in equilibrium. Using equilibrium equation in y direction we have:

                                    - W - Fh*sin(θ) + Fn = 0

Where, W is the weight of the lawnmower and Fn is the contact force exerted by the ground on the lawnmower. Then we have:

                                     Fn = W + Fh*sin(θ)

                                     Fn = m*g + Fh*sin(θ)

The Frictional force Ff is proportional to the contact force Fn by:

                                     Ff = u*Fn

                                     Ff = u*(m*g + Fh*sin(θ))

Substitute this expression in the form derived for Fh and Ff:

                                     Fh*cos(θ) = u*(m*g + Fh*sin(θ))

                                     Fh*(cos(θ) - u*sin(θ)) = u*m*g

                                     Fh = u*m*g / (cos(θ) - u*sin(θ))

You might be interested in
Which of the following ways is usable energy lost?
tamaranim1 [39]
A. Friction or all of the above
4 0
2 years ago
Read 2 more answers
A man runs at a velocity of 4.5 m/s for 15.0 min. When going up an increasingly steep hill, he slows down at a constant rate of
madreJ [45]

The man ran  <u>4252.5 meters.</u>

Why?

To solve the problem, we need to divide the exercise into two movements, the first on while the was running at 4.5 m/s for 15 min, and then, while he was slowing down (going up because of the hill).

First movement: Running at 4.5 m/s for 15 min.

We need convert from minutes to seconds,

1min=60seconds\\\\15min*\frac{60seconds}{1min}=900seconds

Now, calculating the distance covered for the first movement, we have:

x_{1}=0+v_{1}*t_{1}\\\\x_{1}=4.5\frac{m}{s}*900s=4050m

So, we know that the man covered 4050m for the first movement, it will be our initial position for the second movement.

Second movement:  acceleration -0.05m/s^2 (because he's slowing down) for 90 seconds, at 4.5m/s.

x_{2}=x_{1}+v_{1}*t+\frac{1}{2}at^{2}\\\\x_{2}=4050m+4.5m\frac{m}{s}*90seconds-\frac{1}{2}*(0.05\frac{m}{s^{2}})*(90s)^{2}\\\\x_{2}=4050m+405m-(0.5*0.05\frac{m}{s^{2}}*8100s^{2})=4050m+405m-202.5m\\\\x_{2}=4252.5m

Hence, we have that he ran 4252.5 m.

Have a nice day!

4 0
2 years ago
If you add 700 kJ of heat to 700 g of water at 70 degrees C, how much water is left in the container? The latent heat of vaporiz
makkiz [27]

Answer:A

Explanation:Find attached picture file for details

3 0
2 years ago
Use the momentum equation for photons found in this week's notes, the wavelength you found in #3, and Plank’s constant (6.63E-34
Nostrana [21]
To help you I need to assume a wavelength and then calculate the momentum.

The momentum equation for photons is:

p = h / λ , this is the division of Plank's constant by the wavelength.

Assuming λ = 656 nm = 656 * 10 ^ - 9 m, which is the wavelength calcuated in a previous problem, you get:

p = (6.63 * 10 ^-34 ) / (656 * 10 ^ -9) kg * m/s

p = 1.01067 * 10^ - 27 kg*m/s which  must be rounded to three significant figures.

With that, p = 1.01 * 10 ^ -27 kg*m/s

The answers are rounded to only 2 significan figures, so our number rounded to 2 significan figures is 1.0 * 10 ^ - 27 kg*m/s

So, assuming the wavelength λ = 656 nm, the answer is the first option: 1.0*10^-27 kg*m/s.
7 0
2 years ago
Read 2 more answers
A planar loop consisting of seven turns of wire, each of which encloses 200 cm2, is oriented perpendicularly to a magnetic field
PtichkaEL [24]

Answer:

The induced current is 0.084 A

Explanation:

the area given by the exercise is

A = 200 cm^2 = 200x10^-4 m^2

R = 5 Ω

N = 7 turns

The formula of the emf induced according to Faraday's law is equal to:

ε = (-N * dφ)/dt = (N*(b2-b1)*A)/dt

Replacing values:

ε = (7*(38 - 14) * (200x10^-4))/8x10^-3 = 0.42 V

the induced current is equal to:

I = ε /R = 0.42/5 = 0.084 A

3 0
2 years ago
Read 2 more answers
Other questions:
  • A box mass of 24kg is being pulled horizontally on a rough surface by an applied force of 585N. The coefficient of kinetic frict
    9·2 answers
  • When Kevin pulls his cotton shirt off his body, the electrons get transferred from the (shirt or body) to the (shirt or body) .
    13·1 answer
  • Fish, poultry, lean meats, and nuts should be consumed for which of the following nutrients? A. calcium B. carbohydrates C. prot
    6·2 answers
  • One object has twice as much mass as another object. The first object also has twice as much a velocity. b gravitational acceler
    14·1 answer
  • A hydrogen atom contains a single electron that moves in a circular orbit about a single proton. Assume the proton is stationary
    8·1 answer
  • You are working on charge-storage devices for a research center. Your goal is to store as much charge on a given device as possi
    5·1 answer
  • a) Suppose that the current in the solenoid is I(t). Within the solenoid, but far from its ends, what is the magnetic field B(t)
    12·1 answer
  • A 48.0-kg astronaut is in space, far from any objects that would exert a significant gravitational force on him. He would like t
    9·1 answer
  • A bag is gently pushed off the top of a wall at A and swings in a vertical plane at the end of a rope of length l. Determine the
    12·1 answer
  • A kinesin that is transporting a secretory vesicle uses approximately 80 ATP molecules/s. Each ATP provides a kinesin molecule w
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!