answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
olga2289 [7]
2 years ago
6

Consider a lawnmower of mass m which can slide across a horizontal surface with a coefficient of friction μ. In this problem the

lawnmower is pushed using a massless handle, which makes an angle θ with the horizontal. Assume that Fh, the force exerted by the handle, is parallel to the handle.
Take the positive x direction to be to the right and the postive y direction to be upward. Use g for the magnitude of the acceleration due to gravity.

Part A

Find the magnitude, Fh, of the force required to slide the lawnmower over the ground at constant speed by pushing the handle.

Express the required force in terms of given quantities.

Fh =
SubmitHintsMy AnswersGive UpReview Part

Incorrect; Try Again; 5 attempts remaining

Part B

This question will be shown after you complete previous question(s).

Provide FeedbackContinue
Physics
1 answer:
inna [77]2 years ago
5 0

Answer:

Fh = u*m*g / (cos(θ) - u*sin(θ))

Explanation:

Given:

- The mass of lawnmower = m

- The angle the handle makes with the horizontal = θ

- The force applied along the handle = Fh

- The coefficient of friction of the lawnmower with ground = u

Find:

Find the magnitude, Fh, of the force required to slide the lawnmower over the ground at constant speed by pushing the handle.

Solution:

- Construct a Free Body Diagram (FBD) for the lawnmower.

- Realize that there is horizontal force applied parallel to ground due to Fh that drives the lawnmower and a friction force that opposes this motion. We will use to Newton's law of motion to express these two forces in x-direction as follows:

                                     F_net,x = m*a

- Since, the lawnmower is to move with constant speed then we have a = 0.

                                     F_net,x = 0

- The forces as follows:

                                     Fh*cos(θ) - Ff = 0

Where, Ff is the frictional force:

                                     Fh = Ff /cos(θ)

Similarly, for vertical direction y the forces are in equilibrium. Using equilibrium equation in y direction we have:

                                    - W - Fh*sin(θ) + Fn = 0

Where, W is the weight of the lawnmower and Fn is the contact force exerted by the ground on the lawnmower. Then we have:

                                     Fn = W + Fh*sin(θ)

                                     Fn = m*g + Fh*sin(θ)

The Frictional force Ff is proportional to the contact force Fn by:

                                     Ff = u*Fn

                                     Ff = u*(m*g + Fh*sin(θ))

Substitute this expression in the form derived for Fh and Ff:

                                     Fh*cos(θ) = u*(m*g + Fh*sin(θ))

                                     Fh*(cos(θ) - u*sin(θ)) = u*m*g

                                     Fh = u*m*g / (cos(θ) - u*sin(θ))

You might be interested in
A gas is compressed from 600 cm3 to 200cm3 at a constant pressure of 400 kpa. at the same time, 100 j of heat energy is transfer
Mekhanik [1.2K]
The initial volume of the gas is
V_i = 600 cm^3
while its final volume is
V_f = 200 cm^3
so its variation of volume is
\Delta V = V_f - V-i = 200 cm^3 - 600 cm^3 = -400 cm^3 = -400 \cdot 10^{-6} m^3

The pressure is constant, and it is
p=400 kPa = 400 \cdot 10^3 Pa

Therefore the work done by the gas is
W=p\Delta V = (400 \cdot 10^3 Pa)(-400 \cdot 10^{-6} m^3)=-160 J
where the negative sign means the work is done by the surrounding on the gas.

The heat energy given to the gas is
Q=+100 J

And the change in internal energy of the gas can be found by using the first law of thermodynamics:
\Delta U = Q-W = 100 J - (-160 J)=+260 J
where the positive sign means the internal energy of the gas has increased.
7 0
2 years ago
If two waves with identical crests and troughs meet, what is happening? The wave is reflecting. Constructive interference is occ
Kazeer [188]
The correct answer would be that destructive interference is happening. In this interference, the crest of a wave meets a trough of another wave resulting to an amplitude that is lower. The opposite is called the constructive interference. Hope this answers the question.
7 0
2 years ago
Read 2 more answers
A confused dragonfly flies forward and backward in a straight line. Its motion is shown on the following graph of horizontal pos
sertanlavr [38]

Answer:

  0

Explanation:

Assuming your graph and question match the attachment, the average speed is 0. The bug ends up where it started, so its displacement is zero.

  average speed = displacement/time = 0/(8 s)

  average speed = 0

7 0
2 years ago
If Pete ( mass=90.0kg) weights himself and finds that he weighs 30.0 pounds, how far away from the surface of the earth is he
shutvik [7]

Answer: 9938.8 km

Explanation:

1 pound-force = 4.48 N

30.0 pounds-force = 134.4 N

The force of gravitation between Earth and object on the surface of is given by:

F = \frac{GMm}{R^2} = mg

Where M is the mass of the Earth, m is the mass of the object, R (6371 km) is the radius of the Earth.

At height, h above the surface of the Earth, the weight of the object:

(mg)'= \frac{GMm}{(R+h)^2}

we need to find "h"

taking the ratio of two:

\frac{mg}{(mg)'}=\frac{(R+h)^2}{R^2}\\ \Rightarrow \frac{90kg \times 9.8 m/s^2}{134.4 N}=\frac{(R+h)^2}{R^2}\\ \Rightarrow 6.56 R^2= (R+h)^2 \Rightarrow h= (2.56-1)R\\ \Rightarrow h = 1.56 R = 1.56 \times 6371 km = 9938. 8 km

Hence, Pete would weigh 30 pounds at 9938.8 km above the surface of the Earth.

5 0
2 years ago
Sketch a position-time graph for a bear starting
Dmitrij [34]

Explanation:

hopefully that makes sense. the position doesn't change over the 5 seconds, meaning it's stopped but time still continues. then when the slope is negative this shows the bear's position becoming negative (backing up, changing direction).

3 0
2 years ago
Other questions:
  • You are asked to design a spring that will give a 1160-kg satellite a speed of 2.50 m>s relative to an orbiting space shuttle
    10·1 answer
  • Instructions:Drag the tiles to the correct boxes to complete the pairs. Match each term with its definition. Tiles conductor rad
    5·2 answers
  • A student has derived the following nondimensionally homogeneous equation:a=xt2−vt+Fmwhere v is a velocity's magnitude, a is an
    9·1 answer
  • A chemist identifies compounds by identifying bright lines in their spectra. She does so by heating the compounds until they glo
    7·1 answer
  • The researcher requires the force on the wire to point upward with a magnitude of 4.2x10-4 N. The length of the wire that is in
    12·1 answer
  • A sample of a gas occupies a volume of 90 mL at 298 K and a pressure of 702 mm Hg. What is the correct expression for calculatin
    9·1 answer
  • If the gas in a container absorbs 275 Joules of heat, has 125 Joules of work done on it, then does 50 Joules of work, what is th
    14·1 answer
  • How many conditions does the NEC list whereby conductors shall be considered to be outside of a building or other structure?
    5·1 answer
  • A 1.2-m radius cylindrical region contains a uniform electric field along the cylinder axis. It is increasing uniformly with tim
    11·1 answer
  • In a rocket-propulsion problem the mass is variable. Another such problem is a raindrop falling through a cloud of small water d
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!