Answer:
V1 =8.1 m/s
Explanation:
height at highest point (h2) = 4.1 m
height at lowest point (h1) = 0.8 m
acceleration due to gravity (g) = 9.8 m/s^{2}
from conservation of energy, the total energy at the lowest point will be the same as the total energy at the highest point. therefore
mgh1 +
= mgh2 + 
where
- speed at highest point = V2
- speed at lowest point = V1
- mass of the girl and swing = m
- at the highest point, the speed is minimum (V1 = 0)
- at the lowest point the speed is maximum (V2 is the maximum speed)
- therefore the equation becomes mgh1 +
= mgh2
m(gh1 +
) = m(gh2)
gh1 +
= gh2
V1 = 
now we can substitute all required values into the equation above.
V1 = 
V1 = 
V1 =8.1 m/s
Answer:
Ordinal
Explanation:
There are four levels of measurement which include the nominal, ordinal, interval, and ratio. The data collected above is ordinal data as it qualifies the data and still indicates the ordering of the data. It gives the observer an idea of the range of data collected or its rating although mathematical calculations may not be done with it.
The other forms of data include the nominal which simply qualifies the data, the interval which qualifies the data but which the differences between the data can be obtained, and of course the data has no starting point. The ratio scale which is similar to the interval scale but which the ratios between the data obtained can be compared.
Answer:
A) To true. he pressure at the bottom of the pool decreases by exactly the same amount as the atmospheric pressure decreases
Explanation:
Let us propose the solution of this problem before seeing the final statements. The pressure increases with the depth of raposin due to the weight of water that is above the person and also the pressure exerted by the atmosphere on the entire pool, the equation describing this process is
P =
+ ρ g y
Where
is the atmospheric pressure, ρ the water density, and 'y' the depth measured from the surface.
Let's examine this equation in we see that the total pressure is directly proportional to the atmospheric pressure and depth
Now we can examine the claims
A) To true. State agreement or with the equation above
B) False. Pressure changes with atmospheric pressure
C) False. It's the opposite
D) False. They are directly proportional
Answer:
I = 69.3 μA
Explanation:
Current through the straight wire, I = 3.45 A
Number of turns, N = 5 turns
Diameter of the coil, D = 1.25 cm
Resistance of the coil, 
Distance of the wire from the center of the coil, d = 20 cm = 0.2 m
The magnetic field, B₁, when the wire is at a distance, d, from the center of the coil.

Magnetic field B₂ when the wire is at a distance, 2d from the center of the coil


Change in the magnetic field, ΔB = B₂ - B₁ = 0.00001725 - 0.0000345
ΔB = -0.000001725
Induced current, 
E = -N (Δ∅)/Δt
Δ∅ = A ΔB
Area, A = πr²
diameter, d = 0.0125 m
Radius, r = 0.00625 m
A = π* 0.00625²
A = 0.0001227 m²
Δ∅ = -0.000001725 * 0.0001227
Δ∅ = -211.6575 * 10⁻¹²
E = -N (Δ∅)/Δt

Resistance, R = 3.25 μ ohms = 3.25 * 10⁻⁶ ohms
I = E/R

I = 0.0000693 A
I = 69 .3 * 10⁻⁶A
I = 69.3 μA
Answer:
0.018 J
Explanation:
The work done to bring the charge from infinity to point P is equal to the change in electric potential energy of the charge - so it is given by

where
is the magnitude of the charge
is the potential difference between point P and infinity
Substituting into the equation, we find
