Answer:
The gplanet is 0.193 m/s^2
Explanation:
The speed of the pulse is:


where
m=mass of the wire=4 g= 4x10^-3 kg
M=mass of the object= 3 kg
Replacing values:

Answer:
vB' = 0.075[m/s]
Explanation:
We can solve this problem using the principle of linear momentum conservation, which tells us that momentum is preserved before and after the collision.
Now we have to come up with an equation that involves both bodies, before and after the collision. To the left of the equal sign are taken the bodies before the collision and to the right after the collision.

where:
mA = 0.355 [kg]
vA = 0.095 [m/s] before the collision
mB = 0.710 [kg]
vB = 0.045 [m/s] before the collision
vA' = 0.035 [m/s] after the collision
vB' [m/s] after the collison.
The signs in the equation remain positive since before and after the collision, both bodies continue to move in the same direction.
![(0.355*0.095)+(0.710*0.045)=(0.355*0.035)+(0.710*v_{B'})\\v_{B'}=0.075[m/s]](https://tex.z-dn.net/?f=%280.355%2A0.095%29%2B%280.710%2A0.045%29%3D%280.355%2A0.035%29%2B%280.710%2Av_%7BB%27%7D%29%5C%5Cv_%7BB%27%7D%3D0.075%5Bm%2Fs%5D)
<span>The power ratings of several motors are listed in the table.
Motor Power
Brandy X 7,460
Brandy Y 7,650
Brandy Z 7,580
An advertising agency writes marketing material for a new motor (Brand W) that has a power rating of 7,640 W. Which statement comparing the motors can they truthfully use?
I believe the answer is </span><span>Brand W motor does more work each second than Brand X or Brand Z.</span>
They will win by approximately .2m
Divide 400/58=6.9m while the other person is 400/60=6.6 thus he will win by about .2m