answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
adelina 88 [10]
2 years ago
14

You are driving along a highway at 35.0 m/s when you hear the siren of a police car approaching you from behind at constant spee

d and you perceive the frequency as 1340 Hz. You are relieved that he is in pursuit of a different driver when he continues past you, but now you perceive the frequency as 1300 Hz.What is the speed of the police car?
Physics
1 answer:
Lina20 [59]2 years ago
5 0

Answer:

40.13491 m/s

Explanation:

v_r =  My speed = 35 m/s

v = Speed of sound in air = 343 Hz

v_s = Speed of the police car

When the car is approaching

f=f'\dfrac{v-v_r}{v-v_s}\\\Rightarrow 1340=f'\dfrac{343-35}{343-v_s}

When the car is receding

f=f'\dfrac{v+v_r}{v+v_s}\\\Rightarrow 1300=f'\dfrac{343+35}{343+v_s}

Dividing the equations

\dfrac{1340}{1300}=\dfrac{f'\dfrac{343-35}{343-v_s}}{f'\dfrac{343+35}{343+v_s}}\\\Rightarrow \dfrac{1340}{1300}=\dfrac{22\left(v_s+343\right)}{27\left(-v_s+343\right)}\\\Rightarrow -36180v_s+12409740-12409740=28600v_s+9809800-12409740\\\Rightarrow \frac{-64780v_s}{-64780}=\frac{-2599940}{-64780}\\\Rightarrow v_s=\frac{129997}{3239}\\\Rightarrow v_s=40.13491\ m/s

The speed of the police car is 40.13491 m/s

You might be interested in
A vertical wire carries a current straight up in a region where the magnetic field vector points due north. What is the directio
Elanso [62]

Answer:

The direction of the resulting force on this current is due east.

Explanation:

Given;

direction of the magnetic field to be due north

Applying right hand rule which states that: to determine the direction of the magnetic force on a positive moving charge point the thumb of the right hand in the direction of velocity v, the fingers in the direction of magnetic field B, and a perpendicular to the palm points in the direction of magnetic force.

Since the magnetic force must be perpendicular to the magnetic field, and direction of the magnetic field is due north, then the magnetic force must be due East.

Therefore, the direction of the resulting force on this current is due east.

7 0
2 years ago
You've always wondered about the acceleration of the elevators in the 101 story-tall Empire State Building. One day, while visit
love history [14]

To develop this problem we will proceed to convert all units previously given to the international system for which we have to:

140 lb = 63.5 kg \rightarrow 63.5kg (9.8m/s) =622.3 N

120 lb = 54.4 kg \rightarrow 54.4kg (9.8m/s)= 533 N

170 lb = 77.1 kg \rightarrow 77.1 kg (9.8m/s) =756 N

PART A ) From the given values the minimum acceleration will be given for 120Lb and maximum acceleration when 170Lb is reached therefore:

F = 756 - 622.3

F = 133.7N

Through the Newtonian relationship of the Force we have to:

F= ma

a = \frac{F}{m}

a = \frac{133.7}{63.5}

a = 2.1m/s^2

PART B) For the maximum magnitude of the acceleration downward we have that:

F = 622.3 - 533

F = 89.3N

Through the Newtonian relationship of the Force we have to:

F= ma

a = \frac{F}{m}

a = \frac{89.3}{63.5}

a = 2.1m/s^2

a = 1.04 m/s^2

7 0
2 years ago
A satellite revolves around a planet at an altitude equal to the radius of the planet. the force of gravitational interaction be
USPshnik [31]
<span>f2 = f0/4 The gravity from the planet can be modeled as a point source at the center of the planet with all of the planet's mass concentrated at that point. So the initial condition for f0 has the satellite at a distance of 2r, where r equals the planet's radius. The expression for the force of gravity is F = G*m1*m2/r^2 where F = Force G = Gravitational constant m1,m2 = masses involved r = distance between center of masses. Now for f2, the satellite has an altitude of 3r and when you add in the planet's radius, the distance from the center of the planet is now 4r. When you compare that to the original distance of 2r, that will show you that the satellite is now twice as far from the center of the planet as it was when it started. So let's compare the gravitational attraction, before and after. f0 = G*m1*m2/r^2 f2 = G*m1*m2/(2r)^2 f2/f0 = (G*m1*m2/(2r)^2) / (G*m1*m2/r^2) The Gm m1, and m2 terms cancel, so f2/f0 = (1/(2r)^2) / (1/r^2) f2/f0 = (1/4r^2) / (1/r^2) And the r^2 terms cancel, so f2/f0 = (1/4) / (1/1) f2/f0 = (1/4) / 1 f2/f0 = 1/4 f2 = f0*1/4 f2 = f0/4 So the gravitational force on the satellite after tripling it's altitude is one fourth the original force.</span>
6 0
1 year ago
16) A wheel of moment of inertia of 5.00 kg-m2 starts from rest and accelerates under a constant torque of 3.00 N-m for 8.00 s.
KiRa [710]

Answer:

57.6Joules

Explanation:

Rotational kinetic energy of a body can be determined using the expression

Rotational kinetic energy = 1/2Iω²where;

I is the moment of inertia around axis of rotation. = 5kgm/s²

ω is the angular velocity = ?

Note that torque (T) = I¶ where;

¶ is the angular acceleration.

I is the moment of inertia

¶ = T/I

¶ = 3.0/5.0

¶ = 0.6rad/s²

Angular acceleration (¶) = ∆ω/∆t

∆ω = ¶∆t

ω = 0.6×8

ω = 4.8rad/s

Therefore, rotational kinetic energy = 1/2×5×4.8²

= 5×4.8×2.4

= 57.6Joules

6 0
2 years ago
Read 2 more answers
A 56 kg diver runs and dives from the edge of a cliff into the water which is located 4.0 m below. If she is moving at 8.0 m/s t
Reil [10]

Answer:

1) 2197.44 J

2) 0 J

3) 2197.44 J = Constant

4) 2197.44 J

5) Approximately 8.86 m/s

Explanation:

The given parameters are;

The mass of the diver, m = 56 kg

The height of the cliff, h = 4.0 m

The speed with which the diver is moving, vₓ = 8.0 m/s

The gravitational potential energy = Mass, m × Height of the cliff, h × Acceleration due to gravity, g

1) Her gravitational potential energy = 56 × 4.0 × 9.81 = 2197.44 J

2) The kinetic energy = 1/2·m·u²

Where;

u = Her initial velocity = 0 when she just leaves the cliff

Therefore;

Her kinetic energy when she just leaves the cliff = 1/2 × 56 × 0² = 0 J

3) The total mechanical energy = Kinetic energy + Potential energy

The total mechanical energy is constant

Her total mechanical energy relative to the water surface when she leaves the cliff = Her gravitational potential energy = 2197.44 J = Constant

4) Her total mechanical energy relative to the water surface just before she enters the water = 2197.44 J

5) The speed with which she enters the water, v, is given from, v² = u² + 2·g·h

Where;

u = The initial velocity at the top of the cliff before she jumps= 0 m/s

∴ v² = 0² + 2 × 9.81 × 4 = 78.48

v = √78.48 ≈ 8.86 m/s

The speed with which she enters the water, v ≈ 8.86 m/s

7 0
2 years ago
Other questions:
  • A cave explorer travels 3.0 m eastward, then 2.5 m northward, and finally 15.0 m westward. use the graphical method to find the
    8·2 answers
  • Determine the cutting force f exerted on the rod s in terms of the forces p applied to the handles of the heavy-duty cutter.
    11·2 answers
  • Which is a correct method used in a scientific experiment involving acid and base solutions
    9·1 answer
  • 1. A U.S. manufacturer wants to sell computer equipment to companies in Honduras. Because the U.S. government limits trade with
    11·1 answer
  • I have a hot air balloon that has 18.0 g helium gas inside of it. if the pressure is 2.00 atm and the temperature is 297k, what
    11·2 answers
  • A 25.0-kg child plays on a swing having support ropes that are 2.20 m long. Her brother pulls her back until the ropes are 42.0°
    5·1 answer
  • Two leopards are fighting over a piece of meat they caught while hunting. The leopards pull on the meat muscle with a force of 1
    5·1 answer
  • A body of mass 8 kg moves in a (counterclockwise) circular path of radius 10 meters, making one revolution every 10 seconds. You
    7·1 answer
  • A squeeze bottle squeezes when pressed. It regains its shape when pressed .It regains its shape when the pressure from your hand
    5·1 answer
  • Two strings are respectively 1.00 m and 2.00 m long. Which of the following wavelengths, in meters, could represent harmonics pr
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!