answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
SashulF [63]
2 years ago
5

Newton's rings are visible when a planoconvex lens is placed on a flat glass surface. For a particular lens with an index of ref

raction of n= 1.50 and a glass plate with an index of n= 1.80, the diameter of the third bright ring is 0.700 mm .If water = (1.33) now fills the space between the lens and the glass plate, what is the new diameter of this ring? Assume the radius of curvature of the lens is much greater than the wavelength of the light
Physics
1 answer:
blsea [12.9K]2 years ago
7 0

Answer:

the new diameter of the third ring = 0.607 mm

Explanation:

Consider the radius of \\m ^{th}\\ bright ring when air is in between the lens and the plate ;

r = \sqrt {\frac{(2m+1)\lambda R}{2}}

Using the expression: r (n)= \sqrt {\frac{(2m+1)\lambda R}{2n}} for the radius of the  \\m ^{th}\\ bright ring since the liquid (water ) of the refractive index 'n' is now in between the lens and the plate;

where;

\\m ^{th}\\ = number of fringe

λ = wavelength

R = radius

n = refractive index of water

Now ;

r (n)=\frac {r}{n}}

the radius r of the third bright ring when the air is in between lens and plate = r= \frac{0.700 \ mm}{2} \\\\

r= 0.35 \ mm

The new radius of the third bright fringe is r(3) = \frac{0.35}{\sqrt 1.33}

r(3) = 0.3035 \ mm

Calculating the new diameter ; we have:

d(3) = 2(r(3))

d(3) = 2(0.3035)

d = 0.607 mm

Thus, the new diameter of the third ring = 0.607 mm

You might be interested in
A hockey puck with a mass of 0.16 kg travels at a velocity of 40 m/s toward a goalkeeper. The goalkeeper has a mass of 120 kg an
Ainat [17]

Answer:

Explanation:

Momentum is the product of mass of a body and its velocity.

Given the mass of the puck m1 = 0.16kg

velocity of the puck v1 = 40m/s

Given the mass of the goalkeeper m2 = 120kg

velocity of the goalkeeper v2= 0m/s (goal keeper at rest)

The total momentum of the goalkeeper and puck after the puck is caught by the goalkeeper is expressed as:

m1v1 + m2v2 (their momentum will be added since they collide)

= 0.16(40) + 120(0)

= 0.16(40) + 0

= 6.4kgm/s

Let us calculate their common velocity using the conservation of momentum formula;

m1u1 + m2u2 = (m1+m2)v

6.4 = (0.16+120)v

6.4 = 120.16v

v = 6.4/120.16

v = 0.053m/s

Hence after collision, both objects move at a velocity of 0.053m/s

Momentum of the puck after collision = m1v

Momentum of the puck after collision = 0.16*0.053m/s

Momentum of the puck after collision = 0.0085kgm/s

Momentum of the keeper after collision = m2v

Momentum of the keeper after collision = 120*0.053m/s

Momentum of the keeper after collision = 6.36kgm/s

From the calculation above, it can be seen that the keeper has the greater momentum after the puck was caught since the momentum of the keeper after collision is greater than that of the puck

4 0
2 years ago
Two friends of different masses are on the playground. They are playing on the seesaw and are able to balance it even though the
Westkost [7]

Answer:

They are able to balance torques due to gravity.

F_1 L_1 = F_2L_2

Explanation:

When two friends of different masses will balance themselves on see saw then at equilibrium position the see saw will remain horizontal

This condition will be torque equilibrium position where the see saw will not rotate

Here we can say

F_1 L_1 = F_2L_2

here we know that force is due to weight of two friends

and their positions are different with respect to the lever about which see saw is rotating

since both friends are of different weight so they will balance themselves are different positions as per above equation

5 0
2 years ago
pitot tube on an airplane flying at a standard sea level reads 1.07 x 105 N/m2. What is the velocity of the airplane?
Allushta [10]

Answer:

V_infinty=98.772 m/s

Explanation:

complete question is:

The following problem assume an inviscid, incompressible flow. Also, standard sea level density and pressure are 1.23kg/m3(0.002377slug/ft3) and 1.01imes105N/m2(2116lb/ft2), respectively. A Pitot tube on an airplane flying at standard sea level reads 1.07imes105N/m2. What is the velocity of the airplane?

<u>solution:</u>

<u>given:</u>

<em>p_o=1.07*10^5 N/m^2</em>

<em>ρ_infinity=1.23 kg/m^2</em>

<em>p_infinity=1.01*10^5 N/m^2</em>

p_o=p_infinity+(1/2)*(ρ_infinity)*V_infinty^2

V_infinty^2=9756.097

V_infinty=98.772 m/s

8 0
2 years ago
Let’s consider tunneling of an electron outside of a potential well. The formula for the transmission coefficient is T \simeq e^
ioda

Answer:

L' = 1.231L

Explanation:

The transmission coefficient, in a tunneling process in which an electron is involved, can be approximated to the following expression:

T \approx e^{-2CL}

L: width of the barrier

C: constant that includes particle energy and barrier height

You have that the transmission coefficient for a specific value of L is T = 0.050. Furthermore, you have that for a new value of the width of the barrier, let's say, L', the value of the transmission coefficient is T'=0.025.

To find the new value of the L' you can write down both situation for T and T', as in the following:

0.050=e^{-2CL}\ \ \ \ (1)\\\\0.025=e^{-2CL'}\ \ \ \ (2)

Next, by properties of logarithms, you can apply Ln to both equations (1) and (2):

ln(0.050)=ln(e^{-2CL})=-2CL\ \ \ \ (3)\\\\ln(0.025)=ln(e^{-2CL'})=-2CL'\ \ \ \ (4)

Next, you divide the equation (3) into (4), and finally, you solve for L':

\frac{ln(0.050)}{ln(0.025)}=\frac{-2CL}{-2CL'}=\frac{L}{L'}\\\\0.812=\frac{L}{L'}\\\\L'=\frac{L}{0.812}=1.231L

hence, when the trnasmission coeeficient has changes to a values of 0.025, the new width of the barrier L' is 1.231 L

8 0
2 years ago
Two objects have masses m and 5m, respectively. They both are placed side by side on a frictionless inclined plane and allowed t
poizon [28]

Answer:

(E) The two objects reach the bottom of the incline at the same time.

Explanation:

Given;

first object with mass, m

second object with mass, 5m

The acceleration of gravity for both object is the same = 9.8 m/s²

Since both objects have the same acceleration of gravity, and no external force due friction (frictionless inclined plane), they will reach bottom of the inclined at the time.

Thus, the acceleration due to gravity is constant for all objects regardless of their masses.

Therefore, the correct option is E;

(E) The two objects reach the bottom of the incline at the same time.

5 0
2 years ago
Other questions:
  • What is the mass of a baseball clocked moving at a speed of 105 mph or 46.9 m/s and wavelength 9.74 × 10-35m?
    8·1 answer
  • Han and Greedo fire their blasters at each other. The blasts are loud, and the intensity of the sound spreads through the cantin
    11·2 answers
  • A photon has an energy of 5.53 × 10–17 j. what is its frequency in s–1 (h = 6.63 × 10–34 j • s)?
    6·2 answers
  • A dog is chasing a cat towards a tree. The cat has a 10-yard lead and runs at 6 yards per second. The dog runs at a speed of 8 y
    15·1 answer
  • Suppose the gas resulting from the sublimation of 1.00 g carbon dioxide is collected over water at 25.0◦c into a 1.00 l containe
    7·1 answer
  • A straight wire in a magnetic field experiences a force of 0.030 N when the current in the wire is 2.7 A. The current in the wir
    8·1 answer
  • Two pool balls, each moving at 2 m/s, roll toward each other and collide. Suppose after bouncing apart, each moves at 2 m/s. Thi
    8·1 answer
  • Modern wind turbines generate electricity from wind power. The large, massive blades have a large moment of inertia and carry a
    7·1 answer
  • A tiger leaps with an initial velocity of 35.0 km/hr at an angle of 13.0ᶿ with respect to the horizontal. What are the component
    13·1 answer
  • A kinesin that is transporting a secretory vesicle uses approximately 80 ATP molecules/s. Each ATP provides a kinesin molecule w
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!