Answer:
Magnitude of impulse, |J| = 4 kg-m/s
Explanation:
It is given that,
Mass of cart 1, 
Mass of cart 2,
Initial speed of cart 1,
Initial speed of cart 2,
(stationary)
The carts stick together. It is the case of inelastic collision. Let V is the combined speed of both carts. The momentum remains conserved.

V = 1 m/s
The magnitude of the impulse exerted by one cart on the other is given by:


J = -4 kg-m/s
or
|J| = 4 kg-m/s
So, the magnitude of the impulse exerted by one cart on the other 4 kg-m/s. Hence, this is required solution.
A = h / n => h = a*n
a = 0.290 hit / time
n = 300 times
=> h = 0.290 hit / time * 300 time = 87 hits
Answer: 87 hits
Answer:
The electric field strength is 
Solution:
As per the question:
Area of the electrode, 
Charge, q = 50 nC = ![50\times 10^{- 9} C[/etx]Distance, x = 2 mm = [tex]2\times 10^{- 3} m](https://tex.z-dn.net/?f=50%5Ctimes%2010%5E%7B-%209%7D%20C%5B%2Fetx%5D%3C%2Fp%3E%3Cp%3EDistance%2C%20x%20%3D%202%20mm%20%3D%20%5Btex%5D2%5Ctimes%2010%5E%7B-%203%7D%20m)
Now,
To calculate the electric field strength, we first calculate the surface charge density which is given by:

Now, the electric field strength of the electrode is:

where



Answer:
Velocity of electron will be
Explanation:
We have given work function of metal 
Wavelength of the light 
So energy is given by
, here h is plank's constant and c is speed of light
So 
For a metal we know that 
So 
Now kinetic energy is given by 


So velocity of electron will be 