answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Mrac [35]
2 years ago
5

A swimming pool contains x (less than 0.02) grams of chlorine per cubic meter. the pool measures 5 meters by 50 meters and is 2

meters deep. some water will be drained and replaced by water contain 5 grams of chlorine per cubic meter. how much water should be drained so the pool ends up with 0.02 grams of chlorine per cubic meter.
Physics
1 answer:
zubka84 [21]2 years ago
3 0
The solution for this problem would be:(10 - 500x) / (5 - x) 
so start by doing: 
x(5*50*2) - xV + 5V = 0.02(5*50*2) 
500x - xV + 5V = 10 
V(5 - x) = 10 - 500x 
V = (10 - 500x) / (5 - x) 
(V stands for the volume, but leaves us with the expression for x)
You might be interested in
Disturbed by speeding cars outside his workplace, Nobel laureate Arthur Holly Compton designed a speed bump (called the "Holly h
Bezzdna [24]
:<span>  </span><span>30.50 km/h = 30.50^3 m / 3600s = 8.47 m/s 

At the top of the circle the centripetal force (mv²/R) comes from the car's weight (mg) 

So, the net downward force from the car (Fn) = (weight - centripetal force) .. and by reaction this is the upward force provided by the road .. 

Fn = mg - mv²/R 
Fn = m(g - v²/R) .. .. 1800kg (9.80 - 8.47²/20.20) .. .. .. ►Fn = 11 247 N (upwards) 
(b) 
When the car's speed is such that all the weight is needed for the centripetal force .. then the net downward force (Fn), and the reaction from the road, becomes zero. 

ie .. mg = mv²/R .. .. v² = Rg .. .. 20.20m x 9.80 = 198.0(m/s)² 

►v = √198 = 14.0 m/s</span>
3 0
2 years ago
a 75 kg man is standing at rest on ice while holding a 4kg ball. if the man throws the ball at a velocity of 3.50 m/s forward, w
AysviL [449]

Answer:

His resulting velocity will be 0.187 m/s backwards.

Explanation:

Given:

Mass of the man is, M=75\ kg

Mass of the ball is, m=4\ kg

Initial velocity of the man is, u_m=0\ m/s(rest)

Initial velocity of the ball is, u_b=0\ m/s(rest)

Final velocity of the ball is, v_b=3.50\ m/s

Final velocity of the man is, v_m=?\ m/s

In order to solve this problem, we apply law of conservation of momentum.

It states that sum of initial momentum is equal to the sum of final momentum.

Momentum is the product of mass and velocity.

Initial momentum = Initial momentum of man and ball

Initial momentum = Mu_m+mu_b=75\times 0+4\times 0 =0\ Nm

Final momentum = Final momentum of man and ball

Final momentum = Mv_m+mv_b=75\times v_m+4\times 3.50 =75v_m+14

Now, initial momentum = final momentum

0=75v_m+14\\\\75v_m=-14\\\\v_m=\frac{-14}{75}\\\\v_m=-0.187\ m/s

The negative sign implies backward motion of the man.

Therefore, his resulting velocity is 0.187 m/s backwards.

3 0
2 years ago
Suppose that you purchased a water bed with the dimensions 2.55 m à 2.53 dm à 245 cm. what mass of water does this bed contain
Nadya [2.5K]

dimensions of the bed is given as

length = 2.55 m

thickness = 2.53 dm = 0.253 m

width = 245 cm = 2.45 m

now the volume of the bed is given as

V = 2.55 * 0.253 * 2.45 m^3

V = 1.581m^3

now the mass of water in it is given as

mass = density * volume

mass = 1000* 1.581

mass = 1581 kg

<em>so it will contain 1581 kg mass in it</em>

6 0
2 years ago
There have been several proposed atomic models during the last 150 years. Which model best illustrates the Bohr model. This mode
Eva8 [605]
<span>Despite the Quantum Mechanical Model treating the electron mathematically as a wave rather than fixed patterns, the Quantum Mechanical model best illustrates the Bohr model because both models of the atom assign specific energies to an electron.</span>
3 0
2 years ago
Read 2 more answers
An airplane travels horizontally at a constant velocity v. An object is dropped from the plane and one second later another obje
Delvig [45]

Answer:

the vertical distance between the two object will increase uniformly when they are dropped after a fixed interval of time

Explanation:

Since airplane is moving horizontally with constant speed v

so when object is dropped from the plane then the speed of the object will be same as that of the speed of the airplane

so we can say that two object when dropped after some interval of time then they always lie in same vertical line

now we know that they both have same acceleration in vertical line so the motion of two objects relative to each other in vertical direction is always uniform motion because they have no acceleration with respect to each other

So the vertical distance between the two object will increase uniformly when they are dropped after a fixed interval of time

8 0
2 years ago
Other questions:
  • Any ferrous metal object within or near the mri magnet has the potential of becoming a projectile. this is commonly referred to
    6·1 answer
  • Calculate the longest wavelength visible to the human eye. express the wavelength in nanometers to three significant figures.
    15·1 answer
  • The three point charges +4.0 μC, -5.0 μC, and -9.0 μC are placed on the x-axis at the points x = 0 cm, x = 40 cm, and x = 120 cm
    5·2 answers
  • a ball on a string makes 30.0 revolutions in 14.4s, in a circle of radius 0.340m. what is its period.(unit=s)
    12·1 answer
  • Determine the ratio of the flow rate through capillary tubes A and B (that is, QA/QB). The length of A is twice that of B, and t
    8·1 answer
  • A projectile of mass m1 moving with speed v1 in the +x direction strikes a stationary target of mass m2 head-on. The collision i
    10·1 answer
  • In a lab experiment, a student is trying to apply the conservation of momentum. Two identical balls, each with a mass of 1.0 kg,
    11·2 answers
  • You are flying a hang glider at 14 mph in the northeast direction (45°). The wind is blowing at 4 mph from due north.
    11·1 answer
  • Starting at t = 0 a net external force in the +x-direction is applied to an object that has mass 5.00 kg. A graph of the force a
    7·1 answer
  • In the diagram, disk 1 has a moment of inertia of 3.4 kg · m2 and is rotating in the counterclockwise direction with an angular
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!