Answer:
If they are metallic spheres they are connected to earth and a charged body approaches
non- metallic (insulating) spheres in this case are charged by rubbing
Explanation:
For fillers, there are two fundamental methods, depending on the type of material.
If they are metallic spheres, they are connected to earth and a charged body approaches, this induces a charge of opposite sign and of equal magnitude, then it removes the contact to earth and the sphere is charged.
If the non- metallic (insulating) spheres in this case are charged by rubbing with some material or touching with another charged material, in this case the sphere takes half the charge and when separated each sphere has half the charge and with equal sign.
Answer:
The number of turns is 
Explanation:
From the question we are told that
The inner radius is 
The outer radius is 
The current it carries is 
The magnetic field is 
The distance from the center is 
Generally the number of turns is mathematically represented as

Generally
is the permeability of free space with value

So


Answer:
Connect C₁ to C₃ in parallel; then connect C₂ to C₁ and C₂ in series. The voltage drop across C₁ the 2.0-μF capacitor will be approximately 2.76 volts.
.
Explanation:
Consider four possible cases.
<h3>Case A: 12.0 V.</h3>

In case all three capacitors are connected in parallel, the
capacitor will be connected directed to the battery. The voltage drop will be at its maximum: 12 volts.
<h3>Case B: 5.54 V.</h3>
![-3.0\;\mu\text{F}-[\begin{array}{c}-{\bf 2.0\;\mu\text{F}}-\\-1.5\;\mu\text{F}-\end{array}]-](https://tex.z-dn.net/?f=-3.0%5C%3B%5Cmu%5Ctext%7BF%7D-%5B%5Cbegin%7Barray%7D%7Bc%7D-%7B%5Cbf%202.0%5C%3B%5Cmu%5Ctext%7BF%7D%7D-%5C%5C-1.5%5C%3B%5Cmu%5Ctext%7BF%7D-%5Cend%7Barray%7D%5D-)
In case the
capacitor is connected in parallel with the
capacitor, and the two capacitors in parallel is connected to the
capacitor in series.
The effective capacitance of two capacitors in parallel is the sum of their capacitance: 2.0 + 1.5 = 3.5 μF.
The reciprocal of the effective capacitance of two capacitors in series is the sum of the reciprocals of the capacitances. In other words, for the three capacitors combined,
.
What will be the voltage across the 2.0 μF capacitor?
The charge stored in two capacitors in series is the same as the charge in each capacitor.
.
Voltage is the same across two capacitors in parallel.As a result,
.
<h3>Case C: 2.76 V.</h3>
.
Similarly,
- the effective capacitance of the two capacitors in parallel is 5.0 μF;
- the effective capacitance of the three capacitors, combined:
.
Charge stored:
.
Voltage:
.
<h3 /><h3>Case D: 4.00 V</h3>
.
Connect all three capacitors in series.
.
For each of the three capacitors:
.
For the
capacitor:
.
Answer:
The objects must have the same acceleration and the objects must exert the same magnitude force on each other.
Explanation:
The objects must have the same weight: FALSE. This is not needed, any two object can move together in contact no matter their mass.
The objects must have the same acceleration: TRUE. If they have different accelerations, they will separate since the distance each of them travel at a given time will be different.
The objects must have the same net force acting on them: FALSE. This is not needed, since what matters is acceleration, and a=F/m, so if both objects have different net force acting on them, they could have different masses also to compensate and result in the same acceleration.
The objects must exert the same magnitude force on each other: TRUE, this is the 3rd Newton Law, an action must follow the same reaction.
How about a carousel (merry go round).
For any one horse or rider, Speed is constant but direction keeps changing, so velocity does too.