Answer:
The algebraic equation is:

Explanation:
Given information:
mb = book's mass
vb = tangential speed
R = radius of the path
Question: Derive an algebraic equation for the vertical force, Fv = ?
To derive the equation, we need to draw a force diagram for this case, please, see the attached diagram. As you can see, there are three types of forces acting on the system. Two up and one of the weight acting down. Therefore, the algebraic equation is as follows:

The variables were defined above and g is the gravity.
Answer: the correct answer is 7.8026035971 x 10^(-13) joule
Explanation:
Use Energy Conservation. By ``alpha decay converts'', we mean that the parent particle turns into an alpha particle and daughter particles. Adding the mass of the alpha and daughter radon, we get
m = 4.00260 u + 222.01757 u = 226.02017 u .
The parent had a mass of 226.02540 u, so clearly some mass has gone somewhere. The amount of the missing mass is
Delta m = 226.02540 u - 226.02017 u = 0.00523 u ,
which is equivalent to an energy change of
Delta E = (0.00523 u)*(931.5MeV/1u)
Delta E = 4.87 MeV
Converting 4.87 MeV to Joules
1 joule [J] = 6241506363094 mega-electrón voltio [MeV]
4 mega-electrón voltio = 6.40870932 x 10^(-13) joule
4.87 mega-electrón voltio = 7.8026035971 x 10^(-13) joule
Formation of an insoluble solid
Explanation:
One of the remarkable visible signs that indicates a precipitation reaction when two solutions are mixed is the formation of an insoluble solid. The insoluble solid formed is the precipitate.
- Precipitates usually forms in single replacement reactions and double replacement or double decomposition reactions.
- They form when two soluble compounds react. One of the product is an insoluble solid in the solution called the precipitate.
- The solubility table helps to predict whether precipitates forms in a reaction.
Learn more:
precipitate brainly.com/question/8896163
#learnwithBrainly
Answer:
Change in kinetic energy is ( 26CL³)/3
Explanation:
Given :
Net force applied, F(x) = Cx² ....(1)
Displacement of the particle from xi = L to xf = 3L.
The work-energy theorem states that change in kinetic energy of the particle is equal to the net amount of work is done to displace the particle.
That is,
ΔK = W = ∫F·dx
Substitute equation (1) in the above equation.
ΔK = ∫Cx²dx
The limit of integration from xi = L to xf = 3L, so

Substitute the values of xi and xf in the above equation.

