Answer:
1 angstrom = 0.1nm
5000 angstrom = 5000/1 × 0.1nm
<h3>= 500nm</h3>

5000 angstrom = 5000 × 1 × 10^-10
<h3>= 5 × 10^-7 m</h3>
Hope this helps you
Answer:
a fossil of a footprint, trail, burrow, or other trace of an animal rather than of the animal itself.
Explanation:
Trace fossils are the indirect evidence of life in the past, such as the footprints, tracks, burrows, borings, and feces left behind by animals, rather than the preserved remains of the actual animal body itself.
Fossil is the naturally preserved remains of plants and animals which somehow get trapped in amber, hair, petrified wood, oil, coal, and DNA remnants.
Answer:
Kinetic energy, E = 133.38 Joules
Explanation:
It is given that,
Mass of the model airplane, m = 3 kg
Velocity component, v₁ = 5 m/s (due east)
Velocity component, v₂ = 8 m/s (due north)
Let v is the resultant of velocity. It is given by :


Let E is the kinetic energy of the plane. It is given by :


E = 133.38 Joules
So, the kinetic energy of the plane is 133.38 Joules. Hence, this is the required solution.
To solve this problem we will use the kinematic equations of angular motion, starting from the definition of angular velocity in terms of frequency, to verify the angular displacement and its respective derivative, let's start:



The angular displacement is given as the form:
In the equlibrium we have to
and in the given position we have to

Derived the expression we will have the equivalent to angular velocity

Replacing,

Finally

Therefore the maximum angular displacement is 9.848°
Answer:
v₀ₓ = 15 m / s,
= 5.2 m / s
v = 15.87 m / s
, θ = 19.1
Explanation:
This is a projectile launch problem. The horizontal speed that is constant throughout the entire path is worth 15 m / s, instead the vertical speed changes in value due to the acceleration of gravity, let's look for the initial vertical speed
Vy² =
² - 2 g y
² =
² + 2 g y
= √ (
² + 2 gy
Let's calculate
= √ (1.25² + 2 9.8 1.3)
= √ (27.04)
= 5.2 m / s
The initial speed can be calculated by the initial speed
v = √ v₀ₓ² +
²
v = RA (15² + 5.2²)
v = 15.87 m / s
We look for the angle with trigonometry
tan θ = voy / vox
θ = tan⁻¹ I'm going / vox
θ = tan⁻¹ 5.2 / 15
θ = 19.1
The answer is
v₀ₓ = 15 m / s
= 5.2 m / s