answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sonja [21]
1 year ago
13

A parent pushes a stroller with a 11.2 N force for 15.9 m. How much work did the parent do?

Physics
1 answer:
gayaneshka [121]1 year ago
7 0
The definition of work is that it is the Force applied over a distance, times the distance. The only trick is that you have to account only for forces in the direction of movement; any forces that are normal to the movement are not taken into account. Intuitively, work is generated only by forces that contribute  to the movement (or go against it; same or opposite direction).

Let us see now: W=F*d =11.2N* 15.9m=178.1 N*m=178.1 J where J stands for Joules. This is the work that the parent did, namely how much energy he had to put in to move the stroller.
You might be interested in
1. Do alto de uma plataforma com 15m de altura, é lançado horizontalmente um projéctil. Pretende-se atingir um alvo localizado n
sveta [45]

Answer:

(a). The initial velocity is 28.58m/s

(b). The speed when touching the ground is 33.3m/s.

Explanation:

The equations governing the position of the projectile are

(1).\: x =v_0t

(2).\: y= 15m-\dfrac{1}{2}gt^2

where v_0 is the initial velocity.

(a).

When the projectile hits the 50m mark, y=0; therefore,

0=15-\dfrac{1}{2}gt^2

solving for t we get:

t= 1.75s.

Thus, the projectile must hit the 50m mark in 1.75s, and this condition demands from equation (1) that

50m = v_0(1.75s)

which gives

\boxed{v_0 = 28.58m/s.}

(b).

The horizontal velocity remains unchanged just before the projectile touches the ground because gravity acts only along the vertical direction; therefore,

v_x = 28.58m/s.

the vertical component of the velocity is

v_y = gt \\v_y = (9.8m/s^2)(1.75s)\\\\{v_y = 17.15m/s.

which gives a speed v of

v = \sqrt{v_x^2+v_y^2}

\boxed{v =33.3m/s.}

4 0
1 year ago
the millersburg ferry (m=13000.0 kg loaded) puts its engines in full reverse and stops in 65 seconds. if the speed before brakin
kenny6666 [7]

The braking force is -400 N

Explanation:

We can solve this problem by using the impulse theorem, which states that the impulse applied on the ferry (the product of force and time) is equal to its change in momentum:

F \Delta t = m(v-u)

where in this problem, we have:

F is the force applied by the brakes

\Delta t = 65 s is the time interval

m = 13,000 kg is the mass of the ferry

u = 2.0 m/s is the initial velocity

v = 0 is the final velocity

And solving for F, we find the force applied by the brakes:

F=\frac{m(v-u)}{\Delta t}=\frac{(13000)(0-2.0)}{65}=-400 N

where the negative sign indicates that the direction is backward.

Learn more about impulse:

brainly.com/question/9484203

#LearnwithBrainly

4 0
2 years ago
A cyclist is riding his bike up a mountain trail. When he starts up the trail, he is going 8 m/s. As the trail gets steeper, he
taurus [48]
-3 m/s
---------
per min

oh I think 8m/s to 3m/s to 0m/s

idk probably -0.08 

7 0
2 years ago
Read 2 more answers
A spring stretches 0.220 m when a 0.400 kg-mass is hung from it. What is its spring constant? (Mass is not a force )
Fantom [35]
We want to know the amount of force that stretches the spring 0.22 m.
That force is the WEIGHT of the mass hung from it.
The weight of the mass is (mass) times (gravity).
To do that calculation, we need to know the value of gravity, but
gravity has different values on every planet.  I shall assume that
this whole springy question is taking place on Earth, so that the
value of gravity is 9.8 m/s² .

The weight of the mass is (0.4 kg) x (9.8 m/s²) = 3.92 Newtons.

The spring constant is

(force/length of the stretch)

= (3.92 Newtons) / (0.22 meters)

= (3.92 / 0.22) Newtons/meter

= 17.82 N/m .

8 0
2 years ago
Read 2 more answers
You are in a hot-air balloon that, relative to the ground, has a veloc- ity of 6.0 m/s in a direction due east. You see a hawk m
Ann [662]

Answer:

6.32 m/s 18.43° northeast

Explanation:

We express the velocity of hawk as:

v_{Hawk}=v_{balloon}+v_{HawkRelativetoBalloon}=6 x+2 y

We consider positive x towards east and positive y due north. So the magnitude is simply the square root of the square components:

|v_{hawk}|=\sqrt[]{6^2+2^2}=\sqrt{40}≈6.32 m/s

And the angle with respect to the east should be with:

arctan(\frac{2}{6} )=18.43 \°

8 0
2 years ago
Other questions:
  • a 2.0 kg block on an incline at a 60.0 degree angle is held in equilibrium by a horizontal force, what is the magnitude of this
    14·2 answers
  • A quarterback throws a football with an initial velocity v at an angle θ above horizontal. Assume the ball leaves the quarterbac
    14·1 answer
  • Charina says that when waves interact with an object, they will interfere with the object, and that when waves interact with oth
    13·2 answers
  • Goal posts at the ends of football fields are padded as a safety measure for players who might run into them. How does thick pad
    9·2 answers
  • Two identical ladders are 3.0 m long and weigh 600 N each. They are connected by a hinge at the top and are held together by a h
    6·2 answers
  • A carnival game consists of a two masses on a curved frictionless track, as pictured below. The player pushes the larger object
    10·1 answer
  • In a distant solar system, a giant planet has
    10·1 answer
  • A light wave has a 670 nm wavelength in air. Its wavelength in a transparent solid is 420 nm.
    5·1 answer
  • Two buses are driving along parallel freeways that are 5mi apart, one heading east and the other heading west. Assuming that eac
    12·1 answer
  • Using energy considerations and assuming negligible air resistance, show that a rock thrown from a bridge 20.0 m above water wit
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!