answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zalisa [80]
1 year ago
6

If you know that the period of a pendulum is 1.87 seconds, what is the length of that pendulum? (Assume that we are on Earth and

that gravity is 9.81 meters/second².) Select one of the options below as your answer: A. 0.87 centimeters B. 2.1 meters C. 1.6 meters D. 0.87 meters E. 8.3 meters
Physics
2 answers:
shepuryov [24]1 year ago
8 0

Period of an ideal simple pendulum  =  2π √(L / G)

                                          1.87 = 2π √ (L / 9.81)

Divide each side by  2π :      (1.87 / 2π) = √ (L / 9.81)

Square each side:                (1.87 / 2π)²  =  L / 9.81

Multiply each side by  9.81 :      L = (9.81) (1.87 / 2π)²  = <em> 0.869 meter</em>

                                              Choice 'D' is the closest one.


mote1985 [20]1 year ago
8 0

Answer : The correct option is, (D) 0.87 meters

Solution :

Formula used :

T=2\pi \times \sqrt{\frac{L}{g}}

where,

T = time period of a pendulum = 1.87 seconds

L = length of the pendulum = ?

g = gravity on earth = 9.8m/s^2

Now put all the given values in the above formula, we get the length of the pendulum.

1.87s=2\times \frac{22}{7}\times \sqrt{\frac{L}{9.8m/s^2}}

0.2975=\sqrt{\frac{L}{9.8m/s^2}}

Now squaring on both the sides, we get

L=0.868m=0.87m

Therefore, the length of the pendulum is, 0.87 meters.

You might be interested in
In an experiment, students release a block from rest at the top of an inclined plane. The block slides down the plane through a
mote1985 [20]

Answer:

B) Friction

Explanation:

The main source of error is the omission of the effect from friction between block and incline, which is directly proportional to the mass of the block. The force of gravity is constant. The friction force dissipates part of the gravitational potential energy, generating a final speed less than calculated under the consideration of a conservative system. Air resistance is neglected at low speeds like this case.

8 0
2 years ago
12*8A hollow steel ball weighing 4 pounds is suspended from a spring. This stretches the spring 13 feet. The ball is started in
max2010maxim [7]

Answer:

See attached pictures.

Explanation:

See attachments for explanation.

6 0
2 years ago
There are lots of examples of ideal gases in the universe, and they exist in many different conditions. In this problem we will
elena-14-01-66 [18.8K]

Answer:

P = ρRT/M

Explanation:

Ideal gas equation is given as follows generally:

PV = nRT (1)

P = pressure in the containing vessel

V = volume of the containing vessel

n = number of moles

R = gas constant

T = temperature in K

n = m/M

m = mass of the gas contained in the vessel in g

M = molar mass in g/mol

ρ = m/V

Density of the gas = ρ

Substituting for n in (1)

PV = mRT/M. (2)

Dividing equation (2) through by V

P = m/V ×RT/M

P = ρRT/M

5 0
1 year ago
Boiling water in a pan is a good example of convection because___.
belka [17]
Convection means that hotter and less dense fluids have a tendency to rise while colder and more dense fluids sink.

The answer would be (A)
Hot water is denser than cold water and so hot water will be above the cold water.

:D
5 0
2 years ago
Read 2 more answers
A 0.300kg glider is moving to the right on a frictionless, ­horizontal air track with a speed of 0.800m/s when it makes a head-o
e-lub [12.9K]

Answer:

The final velocity of the first glider is 0.27 m/s in the same direction as the first glider

The final velocity of the second glider is 1.07 m/s in the same direction as the first glider.

0.010935 J

0.0858675 J

Explanation:

m_1 = Mass of first glider = 0.3 kg

m_2 = Mass of second glider = 0.15 kg

u_1 = Initial Velocity of first glider = 0.8 m/s

u_2 = Initial Velocity of second glider = 0 m/s

v_1 = Final Velocity of first glider

v_2 = Final Velocity of second glider

As momentum and Energy is conserved

m_{1}u_{1}+m_{2}u_{2}=m_{1}v_{1}+m_{2}v_{2}

{\tfrac {1}{2}}m_{1}u_{1}^{2}+{\tfrac {1}{2}}m_{2}u_{2}^{2}={\tfrac {1}{2}}m_{1}v_{1}^{2}+{\tfrac {1}{2}}m_{2}v_{2}^{2}

From the two equations we get

v_{1}=\frac{m_1-m_2}{m_1+m_2}u_{1}+\frac{2m_2}{m_1+m_2}u_2\\\Rightarrow v_1=\frac{0.3-0.15}{0.3+0.15}\times 0.8+\frac{2\times 0.15}{0.3+0.15}\times 0\\\Rightarrow v_1=0.27\ m/s

The final velocity of the first glider is 0.27 m/s in the same direction as the first glider

v_{2}=\frac{2m_1}{m_1+m_2}u_{1}+\frac{m_2-m_1}{m_1+m_2}u_2\\\Rightarrow v_2=\frac{2\times 0.3}{0.3+0.15}\times 0.8+\frac{0.3-0.15}{0.3+0.15}\times 0\\\Rightarrow v_2=1.067\ m/s

The final velocity of the second glider is 1.07 m/s in the same direction as the first glider.

Kinetic energy is given by

K=\frac{1}{2}m_1v_1^2\\\Rightarrow K=\frac{1}{2}0.3\times 0.27^2\\\Rightarrow K=0.010935\ J

Final kinetic energy of first glider is 0.010935 J

K=\frac{1}{2}m_2v_2^2\\\Rightarrow K=\frac{1}{2}0.15\times 1.07^2\\\Rightarrow K=0.0858675\ J

Final kinetic energy of second glider is 0.0858675 J

6 0
2 years ago
Other questions:
  • Atmospheric pressure decreases as altitude increases. in other words, there is more air pushing down on you at sea level, and th
    8·1 answer
  • A 3.00-kg model airplane has velocity components of 5.00 m/s due east and 8.00 m/s due north. What is the plane’s kinetic energy
    15·2 answers
  • What best describes myotibrils
    12·1 answer
  • Use this free body diagram to help you find the magnitude of the force F2 needed to keep this block in static equilibrium. WILL
    14·1 answer
  • The momentum of an object is determined to be 7.2 × 10-3 kg⋅m/s. Express this quantity as provided or use any equivalent unit. (
    12·1 answer
  • The flight of a kicked football follows the quadratic function f(x)=−0.02x2+2.2x+2, where f(x) is the vertical distance in feet
    14·1 answer
  • Usually, it is observed that climates in coastal regions are moderate as compared to climates in the interiors of continents. Wh
    15·1 answer
  • A wrench is placed at 30 cm in front of a diverging lens with a focal length of magnitude 10 cm. What is the magnification of th
    13·1 answer
  • If an irregularly shaped object (such as a wrench) is dropped from rest in a classroom and feels no air resistance, it will:
    6·1 answer
  • A simple arrangement by means of which e.m.f,s. are compared is known
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!